Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that has been considered a hematopoietic cell-specific signal transducer involved in cell proliferation and differentiation. However, the role of SYK in normal mammary gland is still poorly understood. Here we show that SYK is expressed in mammary glands of dairy cows. Expression of SYK was higher in dry period mammary tissues than in lactating mammary tissues. Knockdown and overexpression of SYK affected dairy cow mammary epithelial cell proliferation as well as the expression of signal molecules involved in proliferation, including protein kinase B (PKB, also known as AKT1), p42/44 mitogen-activated protein kinase (MAPK), and signal transducer and activator of transcription 5 (STAT5). Dual-luciferase reporter assay showed that SYK increased the transcriptional activity of the AKT1 promoter, and cis-elements within the AKT1 promoter region from -439 to -84 bp mediated this regulation. These results suggest that SYK affects mammary epithelial cell proliferation by activating AKT1 at the transcriptional level in mammary glands of dairy cows, which is important for the mammary remodeling process in dry cows as well as for increasing persistency of lactation in lactating cows.
Adequate lipid synthesis by the mammary gland during lactation is essential for the survival of mammalian offspring. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) is a lipid droplet-associated protein and functions to promote lipid accumulation and inhibit lipolysis in mice and human adipocytes. However, the function of CIDEC in regulation of milk lipid synthesis in dairy cow mammary gland remains largely unknown. In this study, 6 multiparous Holstein cows (parity = 3) in early lactation were allocated to high-fat milk (milk yield 33.9 ± 2.1 kg/d, milk fat >3.5%, n = 3) and low-fat milk (milk yield 33.7 ± 0.5 kg/d, milk fat <3.5%, n = 3) groups according to their milk fat content. Lactating cows were slaughtered at 90 d in milk and mammary tissues were collected to detect CIDEC localization. Immunofluorescence staining of sections of lactating mammary glands with high- and low-fat milk showed that CIDEC was expressed in the cytoplasm of epithelial cells and localized to lipid droplets. Lipid droplets and CIDEC protein were also detected in isolated lactating mammary epithelial cells of dairy cows. Immunostaining of CIDEC in isolated mammary epithelial cells also confirmed its presence in the nucleus. The knockdown of CIDEC in cultured bovine mammary epithelial cells decreased milk lipid content and reduced expression of genes associated with mammary de novo fatty acid synthesis, short- and long-chain intracellular fatty acid activation, triacylglycerol synthesis, and transcription regulation. These genes included those for acetyl-CoA carboxylase (ACC, -60%), fatty acid synthase (FASN, -65%), acyl-CoA synthetase short-chain family member 2 (ACSS2, -50%), acyl-CoA synthetase long-chain family member 1 (ACSL1, -30%), diacylglycerol acyltransferase 1 (DGAT1, -60%), sterol regulatory element-binding protein 1 (SREBP1, -45%), and SREBP cleavage activating protein (SCAP, -66%). Conversely, in cells overexpressing CIDEC, triacylglycerol content was increased, and transcription of those genes involved in milk lipid synthesis was coordinately upregulated. These results suggest that CIDEC plays an important role in regulating milk lipid synthesis in dairy cow mammary gland via a mechanism involving gene expression, which provides further insight into the mechanisms regulating mammary lipogenesis in ruminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.