Caenorhabditis elegans is a widely used model organism to study development, aging and behavior. Many of these biological studies require staging a large number of worms to assay a synchronized population of animals. Conventional synchronization techniques such as manual picking, gravity stratification and chemical bleaching are labor-intensive and could perturb animals’ physiology. Thus, there is a need for a simple inexpensive technology to sort a mixed population of worms based on their developmental stages with minimal perturbation. Here we demonstrate a simple but accurate and high-throughput technique to sort based on animal size, which correlates well with developmental stages. The device consists of an array of geometrically optimized pillars that act as a sieve to allow worms of specific sizes to rapidly move through. With optimized chamber heights, pillar spacing and driving pressures, these binary separation devices are capable of independently separating a mixture of worms at two different stages at average efficiency of around 95%, and throughput of hundreds of worms per minute. In addition, when four devices are used sequentially, we demonstrate the ability to stratify a mixture of worms of all developmental stages with >85% overall efficiency.
Animals’ long-term survival is dependent on their ability to sense, filter and respond to their environment at multiple timescales. For example, during development, animals integrate environmental information, which can then modulate adult behavior and developmental trajectory. The neural and molecular mechanisms that underlie these changes are poorly understood. C. elegans is a powerful model organism to study such mechanisms; however, conventional plate-based culturing techniques are limited in their ability to consistently control and modulate an animal’s environmental conditions. To address this need, we developed a microfluidics-based experimental platform capable of long-term culture of a population of developing C. elegans covering the L1 larval stage to adulthood, while achieving spatial consistency and temporal control of their environment. To prevent bacterial accumulation and maintain optimal flow characteristics and nutrient consistency over the operational period of over one hundred and fifty hours, several features of the microfluidic system and the peripheral equipment were optimized. By manipulating food and pheromone exposure over several days, we were able to demonstrate environmental-dependent changes to growth rate and entry to dauer, an alternative developmental state. We envision this system to be useful in studying the mechanisms underlying long timescale changes to behavior and development in response to environmental changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.