The Radio Frequency Identification (RFID) data acquisition rate used for monitoring is so high that the RFID data stream contains a large amount of redundant data, which increases the system overhead. To balance the accuracy and real-time performance of monitoring, it is necessary to filter out redundant RFID data. We propose an algorithm called Time-Distance Bloom Filter (TDBF) that takes into account the read time and read distance of RFID tags, which greatly reduces data redundancy. In addition, we have proposed a measurement of the filter performance evaluation indicators. In experiments, we found that the performance score of the TDBF algorithm was 5.2, while the Time Bloom Filter (TBF) score was only 0.03, which indicates that the TDBF algorithm can achieve a lower false negative rate, lower false positive rate, and higher data compression rate. Furthermore, in a dynamic scenario, the TDBF algorithm can filter out valid data according to the actual scenario requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.