We determined the impact of HER2 signaling on two proangiogenic factors, vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8), and on an antiangiogenic factor, thrombospondin-1 (TSP-1). Re-expression of HER2 in MCF-7 and T-47D breast cancer cells that endogenously express low levels of HER2 resulted in elevated expression of VEGF and IL-8 and decreased expression of TSP-1. Inhibition of HER2 with a humanized anti-HER2 antibody (trastuzumab, or Herceptin s ) or a retrovirus-mediated small interfering RNA against HER2 (siHER2) decreased VEGF and IL-8 expression, but increased TSP-1 expression in BT474 breast cancer cells that express high levels of HER2. These in vitro results were further evaluated by treatment of BT474 xenografts in immunosuppressed mice with trastuzumab. Trastuzumab inhibited growth of BT474 xenografts and decreased microvascular density associated with downregulation of VEGF and IL-8 and with upregulation of TSP-1 expression. Inhibiting the PI3K-AKT pathway decreased VEGF and IL-8 expression. AKT1 overexpession increased VEGF and IL-8 expression, but did not increase TSP-1 expression. A p38 kinase inhibitor, SB203580, instead blocked TSP-1 expression and a p38 activator, MKK6, increased TSP-1 expression. Trastuzumab stimulated sustained p38 activation and SB203580 attenuated the TSP-1 upregulation induced by trastuzumab. HER2 signaling therefore influences the equilibrium between pro-and antiangiogenic factors via distinct signaling pathways. Trastuzumab inhibits angiogenesis and tumor growth, at least in part, through activation of the HER2-p38-TSP-1 pathway and inhibition of the HER2-PI3K-AKT-VEGF/IL-8 pathway.
Purpose SIK2 is a centrosome kinase required for mitotic spindle formation and a potential target for ovarian cancer therapy. Here we examine the effects of a novel small molecule SIK2 inhibitor, ARN-3236, on sensitivity to paclitaxel in ovarian cancer. Experimental Design SIK2 expression was determined in ovarian cancer tissue samples and cell lines. ARN-3236 was tested for its efficiency to inhibit growth and enhance paclitaxel sensitivity in cultures and xenografts of ovarian cancer cell lines. SIK2 siRNA and ARN-3236 were compared for their ability to produce nuclear-centrosome dissociation, inhibit centrosome splitting, block mitotic progression, induce tetraploidy, trigger apoptotic cell death and reduce AKT/survivin signaling. Results SIK2 is overexpressed in approximately 30% of high grade serous ovarian cancers. ARN-3236 inhibited growth of 10 ovarian cancer cell lines at an IC50 of 0.8 to 2.6 μM, where the IC50 of ARN-3236 was inversely correlated with endogenous SIK2 expression (Pearson’s r = −0.642, P = 0.03). ARN-3236 enhanced sensitivity to paclitaxel in 8 of 10 cell lines, as well as in SKOv3ip (P = 0.028) and OVCAR8 xenografts. In at least three cell lines a synergistic interaction was observed. ARN-3236 uncoupled the centrosome from the nucleus in interphase, blocked centrosome separation in mitosis, caused prometaphase arrest and induced apoptotic cell death and tetraploidy. ARN-3236 also inhibited AKT phosphorylation and attenuated survivin expression. Conclusions ARN-3236 is the first orally available inhibitor of SIK2 to be evaluated against ovarian cancer in preclinical models and shows promise in inhibiting ovarian cancer growth and enhancing paclitaxel chemosensitivity.
The molecular mechanisms by which the anti-HER2 antibodies trastuzumab and its murine equivalent 4D5 inhibit tumor growth and potentiate chemotherapy are not fully understood. Inhibition of signaling through the phosphatidylinositol 3-kinase (PI3K)-AKT pathway may be particularly important. Treatment of breast cancer cells that overexpress HER2 with trastuzumab inhibited HER2-HER3 association, decreased PDK1 activity, reduced Thr-308 and Ser-473 phosphorylation of AKT, and reduced AKT enzymatic activity. To place the role of PI3K-AKT in perspective, gene expression was studied by using Affymetrix microarrays and real time reverse transcription-PCR. Sixteen genes were consistently down-regulated 2.0 -4.9-fold in two antibody-treated breast cancer cell lines. Fourteen of the 16 genes were involved in three major functional areas as follows: 7 in cell cycle regulation, particularly of the G 2 -M; 5 in DNA repair/replication; and 2 in modifying chromatin structure. Of the 16 antibody-regulated genes, 64% had roles in cell growth/maintenance and 52% contributed to the cell cycle. Direct inhibition of PI3K with an inhibitor markedly reduced expression of 14 genes that were also affected by the antibody. Constitutive activation of AKT1 blocked the effect of the anti-HER2 antibody on cell cycle arrest and on eight differentially expressed genes. The antibody enhanced docetaxel-induced growth inhibition but did not increase the fraction of apoptotic cells induced with docetaxel alone. In contrast, the antibody plus docetaxel markedly down-regulated two genes, HEC and DEEPEST, required for passage through G 2 -M. Thus, anti-HER2 antibody preferentially affects genes contributing to cell cycle progression and cell growth/maintenance, in part through the PI3K-AKT signaling. Transcriptional regulation by anti-HER2 antibody through PI3K-AKT pathway may potentiate the growth inhibitory activity of docetaxel by affecting cell cycle progression.The human epidermal growth factor receptor 2 (HER2, 1 also known as c-Neu or ErbB-2) encodes a 185-kDa transmembrane tyrosine kinase growth factor receptor. The ligand that binds to the homodimers of HER2 has not yet been identified. Rather, HER2 functions as a preferred co-receptor to form heterodimers with HER1 (epidermal growth factor receptor), HER3, or HER4. Of these heterodimers, HER2-HER3 is particularly important for intracellular signaling (1). HER2 signaling has been linked to a variety of cellular responses to growth factors under both normal and pathophysiological conditions. HER2 signaling is required not only during normal development of the mammary gland but also during development of the glia, neurons, and heart (1, 2). Amplification of the HER2 gene and overexpression of HER2 protein have been documented in ϳ30% of breast and 15% of ovarian cancers (3). In many (but not all) reports, HER2 overexpression has been associated with a more aggressive course of disease. Although the underlying mechanisms for this association are still not well characterized, HER2 overexpression...
BACKGROUND: Dasatinib, an inhibitor of Src/Abl family kinases, can inhibit tumor growth of several solid tumors. However, the effect and mechanism of action of dasatinib in human ovarian cancer cells remains unknown. METHODS: Dasatinib-induced autophagy was determined by acridine orange staining, punctate localization of GFP-LC3, LC3 protein blotting, and electron microscopy. Significance of beclin 1, AKT, and Bcl-2 in dasatinib-induced autophagy and growth inhibition was assayed by small interfering RNA (siRNA) silencing and/or overexpression of the gene of interest. RESULTS: Dasatinib inhibited cell growth by inducing little apoptosis, but substantial autophagy in SKOv3 and HEY ovarian cancer cells. In vivo studies showed dasatinib inhibited tumor growth and induced both autophagy and apoptosis in a HEY xenograft model. Knockdown of beclin 1 and Atg12 expression with their respective siRNAs diminished dasatinib-induced autophagy, whereas knockdown of p27Kip1 with specific siRNAs did not. Small hairpin RNA knockdown of beclin 1 expression reduced dasatinib-induced autophagy and growth inhibition. Dasatinib reduced the phosphorylation of AKT, mTOR, p70S6K, and S6 kinase expression. Constitutive expression of AKT1 and AKT2 inhibited dasatinib-induced autophagy in both HEY and SKOv3 cells. Dasatinib also reduced Bcl-2 expression and activity. Overexpression of Bcl-2 partially prevented dasatinib-induced autophagy. CONCLUSIONS: Dasatinib induces autophagic cell death in ovarian cancer that partially depends on beclin 1, AKT, and Bcl-2. These results may have implications for clinical use of dasatinib. Cancer 2010;116:4980-90.
Autophagy can sustain or kill tumor cells depending upon the context. The mechanism of autophagy-associated cell death has not been well elucidated and autophagy has enhanced or inhibited sensitivity of cancer cells to cytotoxic chemotherapy in different models. ARHI (DIRAS3), an imprinted tumor suppressor gene, is downregulated in 60% of ovarian cancers. In cell culture, re-expression of ARHI induces autophagy and ovarian cancer cell death within 72 h. In xenografts, re-expression of ARHI arrests cell growth and induces autophagy, but does not kill engrafted cancer cells. When ARHI levels are reduced after 6 weeks, dormancy is broken and xenografts grow promptly. In this study, ARHI-induced ovarian cancer cell death in culture has been found to depend upon autophagy and has been linked to G1 cell-cycle arrest, enhanced reactive oxygen species (ROS) activity, RIP1/RIP3 activation and necrosis. Re-expression of ARHI enhanced the cytotoxic effect of cisplatin in cell culture, increasing caspase-3 activation and PARP cleavage by inhibiting ERK and HER2 activity and downregulating XIAP and Bcl-2. In xenografts, treatment with cisplatin significantly slowed the outgrowth of dormant autophagic cells after reduction of ARHI, but the addition of chloroquine did not further inhibit xenograft outgrowth. Taken together, we have found that autophagy-associated cancer cell death and autophagy-enhanced sensitivity to cisplatin depend upon different mechanisms and that dormant, autophagic cancer cells are still vulnerable to cisplatin-based chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.