Ovarian cancer is the most lethal of all gynecological malignancies, and the identification of novel prognostic and therapeutic targets for ovarian cancer is crucial. It is believed that only a small subset of cancer cells are endowed with stem cell properties, which are responsible for tumor growth, metastatic progression and recurrence. NANOG is one of the key transcription factors essential for maintaining self-renewal and pluripotency in stem cells. This study investigated the role of NANOG in ovarian carcinogenesis and showed overexpression of NANOG mRNA and protein in the nucleus of ovarian cancers compared with benign ovarian lesions. Increased nuclear NANOG expression was significantly associated with high-grade cancers, serous histological subtypes, reduced chemosensitivity, and poor overall and disease-free survival. Further analysis showed NANOG is an independent prognostic factor for overall and disease-free survival. Moreover, NANOG was highly expressed in ovarian cancer cell lines with metastasis-associated property and in clinical samples of metastatic foci. Stable knockdown of NANOG impeded ovarian cancer cell proliferation, migration and invasion, which was accompanied by an increase in mRNA expression of E-cadherin, caveolin-1, FOXO1, FOXO3a, FOXJ1 and FOXB1. Conversely, ectopic NANOG overexpression enhanced ovarian cancer cell migration and invasion along with decreased E-cadherin, caveolin-1, FOXO1, FOXO3a, FOXJ1 and FOXB1 mRNA expression. Importantly, we found Nanog-mediated cell migration and invasion involved its regulation of E-cadherin and FOXJ1. This is the first report revealing the association between NANOG expression and clinical outcome of patients with ovarian cancers, suggesting NANOG to be a potential prognostic marker and therapeutic molecular target in ovarian cancer.
Our previous studies demonstrated that PML is a growth suppressor that suppresses oncogenic transformation of NIH/3T3 cells and rat embryo fibroblasts. PML is a nuclear matrix-associated phosphoprotein whose expression is regulated during the cell cycle. Disruption of PML function by t(15;17) in acute promyelocytic leukemia (APL) plays a critical role in leukemogenesis. To further study the role of PML in the control of cell growth, we have stably overexpressed PML protein in the HeLa cell line. This overexpression of PML significantly reduced the growth rate of HeLa cells and suppressed anchorage-independent growth in soft agar. We consequently investigated several parameters correlated with cell growth and cell cycle progression. We found that, in comparison with the parental HeLa cells, HeLa/PML stable clones showed proportionally more cells in G1 phase, fewer cells in S phase and about the same number in G2/M phase. The HeLa/PML clones showed a significantly longer doubling time as a result of a lengthening of the G1 phase. No effect on apoptosis was found in HeLa cells overexpressing PML. This observation indicates that PML suppresses cell growth by increasing cell cycle duration as a result of G1 elongation. To further understand the mechanism of the effect of PML on HeLa cells, expression of cell cycle-related proteins in HeLa/PML and parental HeLa cells was analyzed. We found that Rb phosphorylation was significantly reduced in PML stable clones. Expression of cyclin E, Cdk2 and p27 proteins was also significantly reduced. These studies indicate that PML affects cell cycle progression by mediating expression of several key proteins that normally control cell cycle progression. These results further extend our current understanding of PML function in human cells and its important role in cell cycle regulation.
The molecular mechanisms by which the anti-HER2 antibodies trastuzumab and its murine equivalent 4D5 inhibit tumor growth and potentiate chemotherapy are not fully understood. Inhibition of signaling through the phosphatidylinositol 3-kinase (PI3K)-AKT pathway may be particularly important. Treatment of breast cancer cells that overexpress HER2 with trastuzumab inhibited HER2-HER3 association, decreased PDK1 activity, reduced Thr-308 and Ser-473 phosphorylation of AKT, and reduced AKT enzymatic activity. To place the role of PI3K-AKT in perspective, gene expression was studied by using Affymetrix microarrays and real time reverse transcription-PCR. Sixteen genes were consistently down-regulated 2.0 -4.9-fold in two antibody-treated breast cancer cell lines. Fourteen of the 16 genes were involved in three major functional areas as follows: 7 in cell cycle regulation, particularly of the G 2 -M; 5 in DNA repair/replication; and 2 in modifying chromatin structure. Of the 16 antibody-regulated genes, 64% had roles in cell growth/maintenance and 52% contributed to the cell cycle. Direct inhibition of PI3K with an inhibitor markedly reduced expression of 14 genes that were also affected by the antibody. Constitutive activation of AKT1 blocked the effect of the anti-HER2 antibody on cell cycle arrest and on eight differentially expressed genes. The antibody enhanced docetaxel-induced growth inhibition but did not increase the fraction of apoptotic cells induced with docetaxel alone. In contrast, the antibody plus docetaxel markedly down-regulated two genes, HEC and DEEPEST, required for passage through G 2 -M. Thus, anti-HER2 antibody preferentially affects genes contributing to cell cycle progression and cell growth/maintenance, in part through the PI3K-AKT signaling. Transcriptional regulation by anti-HER2 antibody through PI3K-AKT pathway may potentiate the growth inhibitory activity of docetaxel by affecting cell cycle progression.The human epidermal growth factor receptor 2 (HER2, 1 also known as c-Neu or ErbB-2) encodes a 185-kDa transmembrane tyrosine kinase growth factor receptor. The ligand that binds to the homodimers of HER2 has not yet been identified. Rather, HER2 functions as a preferred co-receptor to form heterodimers with HER1 (epidermal growth factor receptor), HER3, or HER4. Of these heterodimers, HER2-HER3 is particularly important for intracellular signaling (1). HER2 signaling has been linked to a variety of cellular responses to growth factors under both normal and pathophysiological conditions. HER2 signaling is required not only during normal development of the mammary gland but also during development of the glia, neurons, and heart (1, 2). Amplification of the HER2 gene and overexpression of HER2 protein have been documented in ϳ30% of breast and 15% of ovarian cancers (3). In many (but not all) reports, HER2 overexpression has been associated with a more aggressive course of disease. Although the underlying mechanisms for this association are still not well characterized, HER2 overexpression...
Objective To compare the superior‐level facet joint violations (FJV) between robot‐assisted (RA) percutaneous pedicle screw placement and conventional open fluoroscopic‐guided (FG) pedicle screw placement in a prospective cohort study. Methods This was a prospective cohort study without randomization. One‐hundred patients scheduled to undergo RA (n = 50) or FG (n = 50) transforaminal lumbar interbody fusion were included from February 2016 to May 2018. The grade of FJV, the distance between pedicle screws and the corresponding proximal facet joint, and intra‐pedicle accuracy of the top screw were evaluated based on postoperative CT scan. Patient demographics, perioperative outcomes, and radiation exposure were recorded and compared. Perioperative outcomes include surgical time, intraoperative blood loss, postoperative length of stay, conversion, and revision surgeries. Results Of the 100 screws in the RA group, 4 violated the proximal facet joint, while 26 of 100 in the FG group had FJV (P = 0.000). In the RA group, 3 and 1 screws were classified as grade 1 and 2, respectively. Of the 26 FJV screws in the FG group, 17 screws were scored as grade 1, 6 screws were grade 2, and 3 screws were grade 3. Significantly more severe FJV were noted in the FG group than in the RA group (P = 0.000). There was a statistically significant difference between RA and FG for overall violation grade (0.05 vs 0.38, P = 0.000). The average distance of pedicle screws from facet joints in the RA group (4.16 ± 2.60 mm) was larger than that in the FG group (1.92 ± 1.55 mm; P = 0.000). For intra‐pedicle accuracy, the rate of perfect screw position was greater in the RA group than in the FG group (85% vs 71%; P = 0.017). No statistically significant difference was found between the clinically acceptable screws between groups (P = 0.279). The radiation dose was higher in the FG group (30.3 ± 11.3 vs 65.3 ± 28.3 μSv; P = 0.000). The operative time in the RA group was significantly longer (184.7 ± 54.3 vs 117.8 ± 36.9 min; P = 0.000). Conclusions Compared to the open FG technique, minimally invasive RA spine surgery was associated with fewer proximal facet joint violations, larger facet to screw distance, and higher intra‐pedicle accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.