Background: To determine the clinical activity and safety of Chinese herbal medicine (CHM) combined with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) in patients with advanced pulmonary adenocarcinoma (ADC) and the ability of CHM combined with EGFR-TKI to activate EGFR mutations. Methods: Three hundred and fifty-four patients were randomly assigned to EGFR-TKI (erlotinib 150 mg/d, gefitinib 250 mg/d, or icotinib 125 mg tid/d) plus CHM (TKI+CHM, N = 185) or EGFR-TKI plus placebo (TKI+placebo, N = 169). Progression-free survival (PFS) was the primary end point; the secondary end points were overall survival (OS), objective response rate (ORR), disease control rate (DCR), quality of life [Functional Assessment of Cancer Therapy-Lung (FACT-L) and Lung Cancer Symptom Scale (LCSS)], and safety. Results: The median PFS was significantly longer for the TKI+CHM group (13.50 months; 95% CI, 11.20–16.46 months) than with the EGFR-TKI group (10.94 months; 95% CI, 8.97–12.45 months; hazard ratio, 0.68; 95% CI, 0.51–0.90; P = 0.0064). The subgroup analyses favored TKI+CHM as a first-line treatment (15.97 vs. 10.97 months, P = 0.0447) rather than as a second-line treatment (11.43 vs. 9.23 months, P = 0.0530). Patients with exon 19 deletion had a significantly longer PFS than with 21 L858R. The addition of CHM to TKI significantly improved the ORR (64.32% vs. 52.66%, P = 0.026) and QoL. Drug-related grade 1–2 adverse events were less common with TKI+CHM. Conclusions: TKI+CHM improved PFS when compared with TKI alone in patients with EGFR mutation-positive advanced non-small-cell lung cancer (NSCLC). Clinical Trial Registration: , identifier NCT01745302.
Maternally expressed gene 3 (MEG3), a long non-coding RNA (lncRNA), is involved in cancer development and metastasis. The objective of the present study was to evaluate whether common single nucleotide polymorphisms (SNPs) in MEG3 could be related with colorectal cancer risk in Chinese. We genotyped six tagSNPs of MEG3 in a colorectal cancer case-control study including 518 cases and 527 control subjects. Multivariate logistic regression analysis was applied to calculate adjusted odds ratios (ORs). We found that MEG3 rs7158663 AA genotype, but not GA genotype, had significant increased colorectal cancer risk, compared with GG genotype (OR = 1.96 and P = 0.006 for AA versus GG, and OR = 1.20 and P = 0.171 for GA versus GG). Further stratified analysis indicated that the increased risk was significantly correlated with individuals with age ≤ 60 and family history of cancer. However, there was no significant association between rs7158663 and colorectal tumor site and stage (P = 0.842 for tumor site, and P = 0.601 for tumor stage). These results demonstrate that genetic variants in MEG3 may contribute to the development and risk of colorectal cancer. Further studies are required to confirm these findings.
The aim of this article was to investigate the effect of ambroxol on radiation lung injury and the expression of transforming growth factor beta(1) (TGF-beta(1)), as well as tumor necrosis factor alpha (TNF-alpha) in plasma. Totally, 120 patients with locally advanced lung cancer in radiotherapy were randomized into treatment and control groups. Patients in the treatment group took ambroxol orally at a dosage of 90 mg, three times per day for 3 months from the beginning of radiotherapy. The expression of TGF-beta(1) and TNF-alpha in plasma was analyzed. The clinical symptoms and lung diffusing capacity were monitored using high resolving power computed tomography. The level of TGF-beta(1) in the control group was increased (11.8 +/- 5.5 ng/ml), whereas in ambroxol-treated patients, the increase was not significant (5.6 +/- 2.6 ng/ml, P < 0.001). Radiotherapy-induced elevation of TNF-alpha levels, seen in control patients, was also abolished after treatment with ambroxol (5.1 +/- 1.0 vs. 2.4 +/- 0.8 ng/ml, P < 0.001). In the treatment group, carbon monoxide diffusion capacity was not significantly decreased at 6, 12, and 18 months post-radiotherapy, compared with the control group (P < 0.05). Ambroxol decreased the expression of TGF-beta(1) and TNF-alpha, and minimized the diminishment of lung diffusion capacity after radiotherapy.
BackgroundSalidroside [2-(4-hydroxyphenyl)ethyl-β-D-glucopyranoside], one of the most potent ingredients extracted from the plant Rhodiola rosea L., has been shown to have a cardiovascular protective effect as an antioxidant, and early treatment of epirubicin-induced cardiotoxicity has been the focus of clinical chemotherapy in patients with breast cancer. However, the cardioprotective effects of salidroside on epirubicin-induced cardiotoxicity, especially early left ventricular regional systolic dysfunction, have to date been sparsely investigated.ObjectiveThe aim of this study was to investigate the protective effects of salidroside in preventing early left ventricular regional systolic dysfunction induced by epirubicin.MethodsSixty patients with histologically confirmed breast cancer were enrolled. Eligible patients were randomized to receive salidroside (600 mg/day; n= 30) or placebo (n = 30) starting 1 week before chemotherapy. Patients were investigated by means of echocardiography and strain rate (SR) imaging. We also measured plasma concentrations of reactive oxygen species (ROS). All parameters were assessed at baseline and 7 days after each new epirubicin dose of 100 mg/m2.ResultsA decline of the SR peak was observed at an epirubicin dose of 200 mg/m2, with no significant differences between salidroside and placebo (1.35 ± 0.36 vs 1.42 ± 0.49/second). At growing cumulative doses of epirubicin, the SR normalized only with salidroside, showing a significant difference in comparison with placebo at epirubicin doses of 300 mg/m2 (1.67 ± 0.43 vs 1.32 ± 0.53/second, p< 0.05) and 400 mg/m2 (1.68±0.29 vs 1.40 ± 0.23/second, p < 0.05). Moreover, a significant increase in plasma concentrations of ROS was found with placebo, but they remained unchanged with salidroside.ConclusionSalidroside can provide a protective effect on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.