The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.
BACKGROUND: The poultry red mite, Dermanyssus gallinae is recognized worldwide as the most important bloodsucking ectoparasite in layer and breeder flocks. In bloodsucking ectoparasites, ferritins (FERs), the iron-storage proteins, play a pivotal role in dealing with the challenge of large amounts of released iron during the digestion of blood meal. However, no information is available concerning FERs of D. gallinae. The aim of the present study was to investigate the characteristics, functions and the vaccine efficacy of FERs in D. gallinae.RESULTS: Two heavy-chain FERs of D. gallinae were identified and characterized. Phylogenetic analysis indicated that Dg-FER1 may be a secretory FER and Dg-FER2 an intracellular one. RNAi results demonstrated that Dg-fers play key roles in mite survival, successful reproduction and blood digestion. Immunization with rDg-FER1 or rDg-FER2 successfully induced chickens to produce high levels of antigen-specific IgY, resulting in a significant increase in mite mortality (by 58.67% on Day 5) and decreases in oviposition (by 42.15%) and fecundity (by 68.97%) in the rDg-FER1 group, and a 13.73% increase in mite mortality and a 20.89% decrease in fecundity in the rDg-FER1 group. The overall immunization efficacy of rDg-FER1 was 93.51%. CONCLUSION: Two Dg-FERs are crucial to the survival, reproduction and blood digestion of D. gallinae. This study has provided preliminary evidence demonstrating the potential of rDg-FER1 as a vaccine antigen for D. gallinae.
This work aimed to develop a sustained release solid dispersion of ivermectin (IVM-SD) in a lipid matrix (hydrogenated castor oil, HCO) for subcutaneous delivery. Solvent-melting technology was employed to prepare IVM-SDs using HCO. The physicochemical properties of the IVM-SDs were evaluated by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), and Fourier transform infrared spectroscopy (FTIR). The release of IVM from IVM-SDs was evaluated with HPLC in vitro. Pharmacokinetics of IVM was studied in rabbits following a single subcutaneous administration of IVM-SD formulations. The efficacy of IVM-SD against the ear mange mite was evaluated in rabbits. IVM was completely dispersed in HCO in an amorphous state at a drug:carrier ratio lower than 1:3. No chemical interactions between drug and carrier were found besides hydrogen bonding for the amorphous IVM-SDs. The amorphous IVM-SDs formulations exhibited a sustained release of IVM versus physical mixtures (PMs) of IVM and HCO. The drug release decreased as the drug:carrier ratios decreased, and the release kinetics of IVM were controlled via diffusion. Cytotoxicity of IVM-SD to MDCK cells was lower than native IVM. The IVM plasma concentration of SD1:3 remained above 1 ng/mL for 49 d. Higher AUC, MRT, and T values were obtained at a SD1:3 relative to the IVM group. The IVM-SD improved almost 1.1-fold bioavailability of drug compared with IVM in rabbits. IVM-SD could provide longer persistence against rabbit's ear mites than a commercial IVM injection. This study shows that these solid lipid dispersions are a promising approach for the development of subcutaneous IVM formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.