Flat panel displays enjoy 100 billion‐dollar markets with significant penetration in daily life, which require efficient, color‐saturated blue, green, and red light‐emitting diodes (LEDs). The recently emerged halide perovskites have demonstrated low‐cost and outstanding performance for potential LED applications. However, the performance of blue perovskite LEDs (PeLEDs) lags far behind red and green cousins, particularly for color coordinates approaching (0.131, 0.046) that fulfill the Rec. 2020 specification for blue emitters. Here, a high‐efficiency, lead‐free perovskite, CsEuBr3, is reported that exhibits bright blue exciton emission centered at 448 nm with a color coordinates of (0.15, 0.04), contributed from Eu‐5d→Eu‐4f/Br‐4p transition with an optical band gap of 2.85 eV. Further optical characterizations reveal its short excited‐state lifetime of 151 ns, excellent exciton diffusion diffusivity of 0.0227 cm2 s−1, and high quantum yield of ≈69%. Inspired by these findings, deep‐blue PeLEDs based on all‐vacuum processing methods, which have been demonstrated as the most successful approach for the organic LED industry, are constructed. The devices show a maximum external quantum efficiency of 6.5% with an operating half‐lifetime of 50 mins at an initial brightness of 15.9 cd m−2. It is anticipated that this work will inspire further research on lanthanide‐based perovskites for next‐generation LED applications.
Trajectory surface hopping (TSH) methods have been widely used to study photoinduced nonadiabatic processes. In the present study, nonadiabatic dynamics simulations with the widely used Tully's fewest switches surface hopping (FSSH) algorithm and a Landau-Zener-type TSH (LZSH) algorithm have been performed for the internal conversion dynamics of pyrazine. The accuracy of the two TSH algorithms has been critically evaluated by a direct comparison with exact quantum dynamics calculations for a model of pyrazine. The model comprises the three lowest excited electronic states (B 3u (nπ *), A 1u (nπ *), and B 2u (ππ *)) and the nine most relevant vibrational degrees of freedom. Considering photoexcitation to the diabatic B 2u (ππ *) state, we examined the time-dependent diabatic and adiabatic electronic population dynamics. It is found that the diabatic populations obtained with both TSH methods are in good agreement with the exact quantum results. Fast population oscillations between the B 3u (nπ *) and A 1u (nπ *) states, which reflect nonadiabatic electronic transitions driven by coherent dynamics in the normal mode Q 8a , are qualitatively reproduced by both TSH methods. In addition to the model study, the TSH methods have been interfaced with the second-order algebraic diagrammatic construction ab initio electronic-structure method to perform full-dimensional onthe-fly nonadiabatic dynamics simulations for pyrazine. It is found that the electronic population dynamics obtained with the LZSH method is in excellent agreement with that obtained by the FSSH method using a local diabatization algorithm. Moreover, the electronic populations of the full-dimensional on-the-fly calculations are in excellent agreement with the populations of the three-state nine-mode model, which confirms that the internal conversion dynamics of pyrazine is accurately represented by this reduced-dimensional model on the time scale under consideration (200 fs). The original FSSH method, in which the electronic wave function is propagated in the adiabatic representation, yields less accurate results. The oscillations in the populations of the diabatic B 3u (nπ *) and A 1u (nπ *) states driven by the mode Q 8a are also observed in the full-dimensional dynamics simulations.
We survey the electrical transport properties of the single-crystalline, topological chiral semimetal CoSi which was grown via different methods. High-quality CoSi single crystals were found in the growth from tellurium solution. The sample's high carrier mobility enables us to observe, for the first time, quantum oscillations (QOs) in its thermoelectrical signals. Our analysis of QOs reveals two spherical Fermi surfaces around the R point in the Brillouin zone corner. The extracted Berry phases of these electron orbits are consistent with the −2 chiral charge as reported in DFT calculations. Detailed analysis on the QOs reveals that the spin-orbit coupling induced band-splitting is less than 2 meV near the Fermi level, one order of magnitude smaller than our DFT calculation result. We also report the phonon-drag induced large Nernst effect in CoSi at intermediate temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.