Traditional wound dressings mainly participate in the passive healing processes and are rarely engaged in active wound healing by stimulating skin cell behaviors. Electrical stimulation (ES) has been known to regulate skin cell behaviors. Herein, a series of multifunctional hydrogels based on regenerated bacterial cellulose (rBC) and MXene (Ti 3 C 2 T x) are first developed that can electrically modulate cell behaviors for active skin wound healing under external ES. The composite hydrogel with 2 wt% MXene (rBC/MXene-2%) exhibits the highest electrical conductivity and the best biocompatibility. Meanwhile, the rBC/MXene-2% hydrogel presents desired mechanical properties, favorable flexibility, good biodegradability, and high water-uptake capacity. An in vivo study using a rat full-thickness defect model reveals that this rBC/MXene hydrogel exhibits a better therapeutic effect than the commercial Tegaderm film. More importantly, in vitro and in vivo data demonstrate that coupling with ES, the hydrogel can significantly enhance the proliferation activity of NIH3T3 cells and accelerate the wound healing process, as compared to non-ES controls. This study suggests that the biodegradable and electroactive rBC/MXene hydrogel is an appealing candidate as a wound dressing for skin wound healing, while also providing an effective synergistic therapeutic strategy for accelerating wound repair process through coupling ES with the hydrogel dressing.
Bacterial-associated wound infection and antibiotic resistance have posed a major burden on patients and health care systems. Thus, developing a novel multifunctional antibiotic-free wound dressing that cannot only effectively prevent wound infection, but also facilitate wound healing is urgently desired. Herein, a series of multifunctional nanocomposite hydrogels with remarkable antibacterial, antioxidant, and anti-inflammatory capabilities, based on bacterial cellulose (BC), gelatin (Gel), and selenium nanoparticles (SeNPs), are constructed for wound healing application. The BC/Gel/SeNPs nanocomposite hydrogels exhibit excellent mechanical properties, good swelling ability, flexibility and biodegradability, and favorable biocompatibility, as well as slow and sustainable release profiles of SeNPs. The decoration of SeNPs endows the hydrogels with superior antioxidant and anti-inflammatory capability, and outstanding antibacterial activity against both common bacteria (E. coli and S. aureus) and their multidrug-resistant counterparts. Furthermore, the BC/Gel/SeNPs hydrogels show an excellent skin wound healing performance in a rat full-thickness defect model, as evidenced by the significantly reduced inflammation, and the notably enhanced wound closure, granulation tissue formation, collagen deposition, angiogenesis, and fibroblast activation and differentiation. This study suggests that the developed multifunctional BC/Gel/SeNPs nanocomposite hydrogel holds a great promise as a wound dressing for preventing wound infection and accelerating skin regeneration in clinic.
Superhydrophobic
surfaces repel water and other liquids such as tissue fluid, blood,
urine, and pus, which can open up a new avenue for the development
of biomedical devices and has led to promising advances across diverse
fields, including plasma separator devices, blood-repellent sensors,
vascular stents, and heart valves. Here, the fabrication of superhydrophobic
liquid–solid contact triboelectric nanogenerators (TENGs) and
their biomedical applications as droplet sensors are reported. Triboelectrification
energy can be captured and released when droplets are colliding or
slipping on the superhydrophobic layer. The developed superhydrophobic
TENG possesses multiple advantages in terms of simple fabrication,
bendability, self-cleaning, self-adhesiveness, high sensitivity, and
repellency to not only water but also a variety of solutions, including
blood with a contact angle of 158.6°. As a self-powered sensor,
the developed prototypes of a drainage bottle droplet sensor and a
smart intravenous injection monitor based on the superhydrophobic
liquid–solid contact TENG can monitor the clinical drainage
operation and intravenous infusion in real time, respectively. These
prototypes suggest the potential merit of this superhydrophobic liquid–solid
contact TENG in clinical application, paving the way for accurately
monitoring clinical drainage operations and intravenous injection
or blood transfusion in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.