Demand for medium sand has increased greatly with increasing infrastructure construction items. The shortage of construction sand resources has become a serious problem in many districts. It not only increases the engineering cost, and the overexploitation of river sand and mountain as medium sand also brings a series of serious environment problems. There are abundant desert sand (DS) resources in western China. If DS resources can be used to substitute medium sand to produce desert sand concrete (DSC), which was suitable for engineering practice, the environment can be improved and engineering cost can be reduced. Although many researchers had focused on the mechanical performance of DSC, there were few documents on the frost resistance of DSC. Frost resistance experiments of DSC with 50% desert sand replacement ratio (DSRR) and ordinary concrete (OC) were performed in this paper. Influence of freeze-thaw cycles on the mechanical properties of OC and DSC was analyzed. Experimental results showed that, with increasing freeze-thaw cycles, the damage, peak strain, and porosity increased, while elastic modulus, Poisson's ratio, and peak stress declined, the stress-strain curves tended to be flat. Under the same condition of freeze-thaw cycles, the frost resistance of DSC with 50% DSRR was higher than that of OC. Constitutive model of DSC after different freeze-thaw cycles was formulated. The results predicted by constitutive model agreed well with experimental results, which can provide technical support for DSC engineering practice.
Building fires and shortage of medium sand resources have become two major issues in building domain. Desert sand was used to produce desert sand concrete (DSC), which was suitable for engineering utility. The mechanical properties tests of DSC with different desert sand replacement ratio (DSRR) were carried out after elevated temperature. The effects of elevated temperature and DSRR on DSC mechanical properties were analyzed. DSC microstructure was investigated by SEM and XRD. Research studies’ results showed that the relative compressive strength increased gradually with increasing temperature. The maximum value appeared at 200°C–300°C, and it began to decrease at 500°C. Compared with room temperature, the compressive strength at 700°C was about 70% of that at room temperature. Relative splitting tensile strength increased first and then decreased, and the value reached the maximum at 100°C. DSC relative flexural strength decreased with the temperature. Relative compressive strength, splitting tensile strength, and flexural strength of DSC enhanced first and then decreased with DSRR, and the maximum values were obtained with 40% DSRR. Based on the regressive analysis, the relative compressive strength was a quadratic polynomial with relative porosity. Relative splitting tensile strength and relative flexural strength were linear with relative porosity. Research results can provide the technical support for DSC engineering application and postfire assessment.
The shortage of sand resources and high-rise building fires are becoming increasingly prominent. Desert sand (DS) with smaller particles can effectively fill the concrete voids and further improve its working performance; it is used as a fine aggregate to produce concrete. This article studied the performance of desert sand concrete (DSC) against fire resistance by using mathematical modeling for simulation. The stress-strain curves of desert sand mortar (DSM) after elevated temperatures were tested, and the constitutive model was established. By comparing the experiment and simulation results, it was verified that the model is suitable to be adopted in this study. Data from experiment and past literature can serve as parameters for the subsequent simulation. The destruction process of DSC under uniaxial compression after elevated temperature was simulated by using ANSYS. The simulation results indicated that, after elevated temperature, compressive strength reduced with increase of interface thickness. The compressive strength of DSC had a substantially linear increase as the interface compressive strength increased. For two-grade coarse aggregate, the optimum volume content was 45%, and particle size of it showed a significant effect on the compressive strength of DSC. The DSM constitutive model and simulation results can provide a sound theoretical basis and technical support for DSC engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.