The acrosome is a specialized organelle that covers the anterior part of the sperm nucleus and plays an essential role in the process of fertilization. The molecular mechanism underlying the biogenesis of this lysosome-related organelle (LRO) is still largely unknown. Here, we show that germ cell-specific Atg7-knockout mice were infertile due to a defect in acrosome biogenesis and displayed a phenotype similar to human globozoospermia; this reproductive defect was successfully rescued by intracytoplasmic sperm injections. Furthermore, the depletion of Atg7 in germ cells did not affect the early stages of development of germ cells, but at later stages of spermatogenesis, the proacrosomal vesicles failed to fuse into a single acrosomal vesicle during the Golgi phase, which finally resulted in irregular or nearly round-headed spermatozoa. Autophagic flux was disrupted in Atg7-depleted germ cells, finally leading to the failure of LC3 conjugation to Golgi apparatus-derived vesicles. In addition, Atg7 partially regulated another globozoospermia-related protein, Golgi-associated PDZ-and coiled-coil motif-containing protein (GOPC), during acrosome biogenesis. Finally, the injection of either autophagy or lysosome inhibitors into testis resulted in a similar phenotype to that of germ cell-specific Atg7-knockout mice. Altogether, our results uncover a new role for Atg7 in the biogenesis of the acrosome, and we provide evidence to support the autolysosome origination hypothesis for the acrosome.
Ubiquitination of a subset of proteins by ubiquitin chain elongation factors (E4), represented by Ufd2p in Saccharomyces cerevisiae, is a pivotal regulator for many biological processes. However, the mechanism of Ufd2p-mediated ubiquitination is largely unclear. Here, we show that Ufd2p catalyses K48-linked multi-monoubiquitination on K29-linked ubiquitin chains assembled by the ubiquitin ligase (Ufd4p), resulting in branched ubiquitin chains. This reaction depends on the interaction of K29-linked ubiquitin chains with two N-terminal loops of Ufd2p. Only following the addition of K48-linked ubiquitin to substrates modified with K29-linked ubiquitin chains, can the substrates be escorted to the proteasome for degradation. We demonstrate that this ubiquitin chain linkage switching reaction is essential for ERAD, oleic acid and acid pH resistance in yeast. Thus, our results suggest that Ufd2p functions by switching ubiquitin chain linkages to allow the degradation of proteins modified with a ubiquitin linkage, which is normally not targeted to the proteasome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.