Osteoprotegerin (OPG) is a secreted protein that inhibits osteoclast formation. In this study the physiological role of OPG is investigated by generating OPG-deficient mice. Adolescent and adult OPG −/− mice exhibit a decrease in total bone density characterized by severe trabecular and cortical bone porosity, marked thinning of the parietal bones of the skull, and a high incidence of fractures. These findings demonstrate that OPG is a critical regulator of postnatal bone mass. Unexpectedly, OPG-deficient mice also exhibit medial calcification of the aorta and renal arteries, suggesting that regulation of OPG, its signaling pathway, or its ligand(s) may play a role in the long observed association between osteoporosis and vascular calcification.
The family of calcium binding proteins called KChIPs associates with Kv4 family K(+) channels and modulates their biophysical properties. Here, using mutagenesis and X-ray crystallography, we explore the interaction between Kv4 subunits and KChIP1. Two regions in the Kv4.2 N terminus, residues 7-11 and 71-90, are necessary for KChIP1 modulation and interaction with Kv4.2. When inserted into the Kv1.2 N terminus, residues 71-90 of Kv4.2 are also sufficient to confer association with KChIP1. To provide a structural framework for these data, we solved the crystal structures of Kv4.3N and KChIP1 individually. Taken together with the mutagenesis data, the individual structures suggest that that the Kv4 N terminus is required for stable association with KChIP1, perhaps through a hydrophobic surface interaction, and that residues 71-90 in Kv4 subunits form a contact loop that mediates the specific association of KChIPs with Kv4 subunits.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin and leptin receptor pathways and thus an attractive therapeutic target for diabetes and obesity. Starting with a high micromolar lead compound, structure-based optimization of novel PTP1B inhibitors by extension of the molecule from the enzyme active site into the second phosphotyrosine binding site is described. Medicinal chemistry, guided by X-ray complex structure and molecular modeling, has yielded low nanomolar PTP1B inhibitors in an efficient manner. Compounds from this chemical series were found to be actively transported into hepatocytes. This active uptake into target tissues could be one of the possible avenues to overcome the poor membrane permeability of PTP1B inhibitors.
Insulin resistance in the liver and peripheral tissues, together with a pancreatic cell defect, are the common causes of Type 2 diabetes. It is now appreciated that insulin resistance can result from a defect in the insulin receptor signaling system, at a site post binding of insulin to its receptor. Protein tyrosine phosphatases (PTPases) have been shown to be negative regulators of the insulin receptor. Inhibition of PTPases may be an effective method in the treatment of Type 2 diabetes. We have identified two novel series of benzofuran/benzothiophene biphenyl oxo-acetic acids and sulfonyl-salicylic acids as potent inhibitors of PTP1B with good oral antihyperglycemic activity. To assist in the design of these inhibitors, crystallographic studies have attempted to identify enzyme inhibitor interactions. Resolution of crystal complexes has suggested that the inhibitors bind to the enzyme active site and are held in place through hydrogen bonding and van der Waals interactions formed within two hydrophobic pockets. In the oxo-acetic acid series, hydrophobic substitutents at position-2 of the benzofuran/benzothiophene biphenyl framework interacted with Phe182 of the catalytic site and were very critical to the intrinsic activity of the molecule. The hydrophobic region of the catalytic-site pocket was exploited and taken advantage by hydrophobic substituents at either the alpha-carbon or the ortho aromatic positions of the oxo-acetic acid moiety. Similar ortho aromatic substitutions on the salicylic acid-type inhibitors had no effect, primarily due to the different orientation of these inhibitors in the catalytic site. The most active inhibitors of both series inhibited recombinant human PTP1B with phosphotyrosyl dodecapeptide TRDI(P)YETD(P)Y(P)YRK as the source of the substrate with IC(50) values in the range of 20-50 nM. Compound 68 was one of the most active compounds in vivo, normalizing plasma glucose levels at the 25 mg/kg dose (po) and the 1 mg/kg dose (ip). Compound 68 was also selective against several other PTPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.