Summary
There is an increasing amount of literature focused on Bayesian computational methods to address problems with intractable likelihood. One approach is a set of algorithms known as Approximate Bayesian Computational (ABC) methods. One of the problems with these algorithms is that their performance depends on the appropriate choice of summary statistics, distance measure and tolerance level. To circumvent this problem, an alternative method based on the empirical likelihood has been introduced. This method can be easily implemented when a set of constraints, related to the moments of the distribution, is specified. However, the choice of the constraints is sometimes challenging. To overcome this difficulty, we propose an alternative method based on a bootstrap likelihood approach. The method is easy to implement and in some cases is actually faster than the other approaches considered. We illustrate the performance of our algorithm with examples from population genetics, time series and stochastic differential equations. We also test the method on a real dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.