Lung squamous cell carcinoma (LSCC) exhibits a number of similarities with lung adenocarcinoma (LA) in terms of copy number alterations. However, compared with LA, the range of genetic alterations in LSCC is less understood. In the present study, a large-scale literature-based search of LA-associated genes and LSCC-associated genes was performed to identify the genetic basis in common with these two diseases. For each of the LA-associated genes, a mega-analysis was performed to test its expression variations in LSCC using 11 RNA expression datasets, with significant genes identified using statistical analysis. Subsequently, a functional pathway analysis was performed to identify a possible association between any of the significant genes identified from the mega-analysis and LSCC, followed by a co-expression analysis. A multiple linear regression (MLR) model was employed to investigate the possible influence of sample size, country of origin and study date on gene expression in patients with LSCC. Disease-gene association data analysis identified 1,178 genes involved in LA, 334 in LSCC, with a significant overlap of 187 genes (P<1.02× −161 ). Mega-analysis revealed that three LA-associated genes, such as solute carrier family 2 member 1 (SLC2A1), endothelial PAS domain protein 1 (EPAS1) and cyclin-dependent kinase 4 (CDK4), were significantly associated with LSCC (P<1.60×10 −8 ), with multiple potential pathways identified by functional pathway analysis, which were further validated by co-expression analysis. The present MLR analysis suggested that the country of origin was a significant factor for the levels of expression of all three genes in patients with LSCC (P<4.0×10 −3 ). Collectively, the present results suggested that genes associated with LA should be further investigated for their association with LSCC. In addition, SLC2A1, EPAS1 and CDK4 may be novel risk genes associated with LA and LSCC.
Under the action of an earthquake, the interaction between water bodies and solids is an important part of analyzing the stability of water retaining structures. This paper proposes the use of shell elements to simulate two-way water retaining thin plates, and the correctness of the method is verified by ANSYS fluid-solid coupling plate; then the new method is used to simulate the impact of the water on the thin plate under the action of earthquakes. Earthquake water pressure is used to analyze the seismic response law of the two-way water retaining plate. The research results show that: the hydrodynamic pressure of the two-way water-retaining sheet is greater than that of the one-way water-retaining, and is approximately equal to the sum of the dynamic pressures of the two-way water-retaining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.