Elderly exhibit accumulating deficits in visual motion perception, which is critical for humans to interact with their environment. Previous studies have suggested that aging generally reduces neuronal inhibition in the visual system. Here, we investigated how aging affects the local intra-cortical inhibition using a motion direction discrimination task based on the motion repulsion phenomenon. Motion repulsion refers to the phenomenon by which observers overestimate the perceived angle when two superimposed dot patterns are moving at an acute angle. The misperception has been interpreted as local mutual inhibition between nearby direction-tuned neurons within the same cortical area. We found that elderly exhibited much stronger motion repulsion than young adults. We then compared this effect to how aging affects the global inter-cortical inhibition by adopting the surround suppression paradigm previously used by Betts et al. (2005). We found that elderly showed less change in the discrimination threshold when the size of a high-contrast drifting Gabor was increased, indicating reduced surround suppression compared to young adults. Our results indicate that aging may not always lead to a decrease of neuronal inhibition in the visual system. These distinct effects of aging on inhibitory functions might be one of the reasons that elderly people often exhibit deficits of motion perception in a real-world situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.