In this note we deal with the allocation of independent and identical active redundancies to a k-out-of-n system with the usual stochastic order among its independent components. The optimal policy is proved both to assign more redundancies to the weaker component and to majorize all other policies. This improves the corresponding one in Hu and Wang (2009) and serves as a nice supplement to that in Misra, Dhariyal and Gupta (2009) as well.
The prevailing engineering principle that redundancy at the component level is superior to redundancy at the system level is generalized to coherent systems with dependent components. Sufficient (and necessary) conditions are presented to compare component and system redundancies by means of the usual stochastic, hazard rate, reversed hazard rate, and likelihood ratio orderings. Explicit numerical examples are provided to illustrate the theoretical findings. Some related results in the literature are generalized and extended.
In this note we deal with the allocation of independent and identical active redundancies to a k-out-of-n system with the usual stochastic order among its independent components. The optimal policy is proved both to assign more redundancies to the weaker component and to majorize all other policies. This improves the corresponding one in Hu and Wang (2009) and serves as a nice supplement to that in Misra, Dhariyal and Gupta (2009) as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.