Exploratory Data Analysis (EDA) is a crucial step in any data science project. However, existing Python libraries fall short in supporting data scientists to complete common EDA tasks for statistical modeling. Their API design is either too low level, which is optimized for plotting rather than EDA, or too high level, which is hard to specify more fine-grained EDA tasks. In response, we propose DataPrep.EDA, a novel task-centric EDA system in Python. Dat-aPrep.EDA allows data scientists to declaratively specify a wide range of EDA tasks in different granularity with a single function call. We identify a number of challenges to implement Dat-aPrep.EDA, and propose effective solutions to improve the scalability, usability, customizability of the system. In particular, we discuss some lessons learned from using Dask to build the data processing pipelines for EDA tasks and describe our approaches to accelerate the pipelines. We conduct extensive experiments to compare DataPrep.EDA with Pandas-profiling, the state-of-the-art EDA system in Python. The experiments show that DataPrep.EDA significantly outperforms Pandas-profiling in terms of both speed and user experience. DataPrep.EDA is open-sourced as an EDA component of DataPrep: https://github.com/sfu-db/dataprep.
Obtaining an explanation for an SQL query result can enrich the analysis experience, reveal data errors, and provide deeper insight into the data. Inference query explanation seeks to explain unexpected aggregate query results on inference data; such queries are challenging to explain because an explanation may need to be derived from the source, training, or inference data in an ML pipeline. In this paper, we model an objective function as a black-box function and propose BOExplain, a novel framework for explaining inference queries using Bayesian optimization (BO). An explanation is a predicate defining the input tuples that should be removed so that the query result of interest is significantly affected. BO --- a technique for finding the global optimum of a black-box function --- is used to find the best predicate. We develop two new techniques (individual contribution encoding and warm start) to handle categorical variables. We perform experiments showing that the predicates found by BOExplain have a higher degree of explanation compared to those found by the state-of-the-art query explanation engines. We also show that BOExplain is effective at deriving explanations for inference queries from source and training data on a variety of real-world datasets. BOExplain is open-sourced as a Python package at https://github.com/sfu-db/BOExplain.
Data is often stored in a database management system (DBMS) but dataframe libraries are widely used among data scientists. An important but challenging problem is how to bridge the gap between databases and dataframes. To solve this problem, we present ConnectorX, a client library that enables fast and memory-efficient data loading from various databases to different dataframes. We first investigate why the loading process is slow and consumes large memory. We surprisingly find that the main overhead comes from the client-side rather than query execution or data transfer. We integrate several existing and new techniques to reduce the overhead and carefully design the system architecture and interface to make ConnectorX easy to extend to various databases and dataframes. Moreover, we propose server-side result partitioning that can be adopted by DBMSs in order to better support exporting data to data science tools. We conduct extensive experiments to evaluate ConnectorX and compare it with popular libraries. The results show that ConnectorX significantly outperforms existing solutions. ConnectorX is open sourced at: https://github.com/sfu-db/connector-x.
How can we debug a logistic regression model in a federated learning setting when seeing the model behave unexpectedly (e.g., the model rejects all high-income customers' loan applications)? The SQL-based training data debugging framework has proved effective to fix this kind of issue in a non-federated learning setting. Given an unexpected query result over model predictions, this framework automatically removes the label errors from training data such that the unexpected behavior disappears in the retrained model. In this paper, we enable this powerful framework for federated learning. The key challenge is how to develop a security protocol for federated debugging which is proved to be secure, efficient, and accurate. Achieving this goal requires us to investigate how to seamlessly integrate the techniques from multiple fields (Databases, Machine Learning, and Cybersecurity). We first propose FedRain, which extends Rain, the state-of-the-art SQL-based training data debugging framework, to our federated learning setting. We address several technical challenges to make FedRain work and analyze its security guarantee and time complexity. The analysis results show that FedRain falls short in terms of both efficiency and security. To overcome these limitations, we redesign our security protocol and propose Frog, a novel SQL-based training data debugging framework tailored for federated learning. Our theoretical analysis shows that Frog is more secure, more accurate, and more efficient than FedRain. We conduct extensive experiments using several real-world datasets and a case study. The experimental results are consistent with our theoretical analysis and validate the effectiveness of Frog in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.