The present study investigated the antioxidant enzyme activities (AEA) of ascorbate peroxidase (APX), catalase (CAT), guaiacol peroxidase (GPX), and superoxide dismutase (SOD) as biomarkers of Cu and Pb stress by using Centella asiatica grown in an experimental hydroponic condition. The results showed (i) higher accumulations of Cu and Pb in the roots of C. asiatica than those in the leaves, (ii) synergistic effects of Cu and Pb stress at higher metal-level exposures, and (iii) Cu and Pb stress triggered the increment of APX, CAT, GPX, and SOD levels in both the leaves and roots of C. asiatica. The increment of four AEA indicated that C. asiatica underwent oxidative stress caused by the production of reactive oxygen species when the plant was exposed to Cu and Pb. In order to prevent damages caused by Cu and Pb stress, the AEA system was heightened in C. asiatica, in which APX, CAT, GPX, and SOD can be used as biomarkers of Pb and Cu stress in the plant.
Human health risk and phytoremediation of potentially toxic metals (PTMs) in the edible vegetables have been widely discussed recently. This study aimed to determine the concentrations of four PTMs, namely Cd, Fe, Ni, and Zn) in Amaranthus viridis (leaves, stems, and roots) collected from 11 sampling sites in Peninsular Malaysia and to assess their human health risk (HHR). In general, the metal levels followed the order: roots > stems > leaves. The metal concentrations (µg/g) in the leaves of A. viridis ranged from 0.45 to 2.18 dry weight (dw) (0.05–0.26 wet weight (ww)), 74.8 to 535 dw (8.97–64.2 ww), 2.02 to 7.45 dw (0.24–0.89 ww), and 65.2 to 521 dw (7.83–62.6 ww), for Cd, Fe, Ni, and Zn, respectively. The positive relationships between the metals, the plant parts, and the geochemical factions of their habitat topsoils indicated the potential of A. viridis as a good biomonitor of Cd, Fe, and Ni pollution. With most of the values of the bioconcentration factor (BCF) > 1.0 and the transfer factor (TF) > 1.0, A. viridis was a very promising phytoextraction agent of Ni and Zn. Additionally, with most of the values of BCF > 1.0 and TF < 1.0, A. viridis was a very promising phytostabiliser of Cd and Fe. With respect to HHR, the target hazard quotients (THQ) for Cd, Fe, Pb, and Zn in the leaves of A. viridis were all below 1.00, indicating there were no non-carcinogenic risks of the four metals to consumers, including children and adults. Nevertheless, routine monitoring of PTMs in Amaranthus farms is much needed.
This study aimed to analyse ten trace metal concentrations in the edible part of the freshwater clam Corbicula javanica and to provide a critical assessment of the potential risks to human health through consumption of this clam as food based on well-established indices and food safety guidelines. The clams were captured from a pristine original site and transplanted to other sites with different environmental qualities. The trace metal levels in the edible total soft tissue (TST) of the clam were below those of the food safety guidelines referred to except for Pb, which exceeded the permissible limit set by the European Commission (2006) and the US Food and Drug Administration/ Center for Food Safety and Applied Nutrition); Interstate Shellfish Sanitation Conference. (USFDA/CFSAN; ISSC) (2007). The estimated daily intake (EDI) values of the clam were found to be lower than the oral reference dose and the calculated target hazard quotient (THQ) and total THQ were found to be less than 1. Therefore, in conclusion, the human health risk for consumption of TST of C. javanica at both average and high-level were insignificant regardless of the environment it was exposed to.
Human activities due to different land uses are being studied widely in many countries. This study aimed to determine the ecological risks and human health risk assessments (HHRA) of Cd, Pb, Ni, Cu, and Zn in the topsoils of six land uses in Peninsular Malaysia. The ranges of the potentially toxic metals (PTMs) in the soils (mg/kg, dry weight) of this study were 0.24–12.43 for Cd (mean: 1.94), 4.66–2363 for Cu (mean: 228), 2576–116,344 for Fe (mean: 32,618), 2.38–75.67 for Ni (mean: 16.04), 7.22–969 for Pb (mean: 115) and 11.03–3820 for Zn (mean: 512). For the ecological risk assessments, the potential ecological risk index (PERI) for single metals indicated that the severity of pollution of the five metals decreased in the following sequence: Cd > Cu > Pb > Zn > Ni. It was found that industry, landfill, rubbish heap, and mining areas were categorized as “very high ecological risk”. For HHRA, the land uses of industry, landfill and rubbish heap were found to have higher hazard quotient (HQ) values for the three pathways (with the order: ingestion > dermal contact > inhalation ingestion) of the five metals for children and adults, when compared to the mining, plantation, and residential areas. The values for both the non-carcinogenic (Cd, Cu, Ni, and Zn), and carcinogenic risks (CR) for inhalation (Cd and Ni) obtained for children and adults in this study showed no serious adverse health impacts on their health. However, of public concern, the hazard index (HI), for Pb of children at the landfill (L-3) and the rubbish heap (RH-3) sites exceeded 1.0, indicating non-carcinogenic risk (NCR) for children. Therefore, these PERI and HHRA results provided fundamental data for PTMs pollution mitigation and environmental management in areas of different land uses in Peninsular Malaysia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.