Sulfur-containing polymers have been widely studied because of their high refractivity and low dispersion, but the efficient synthetic approach of them is quite limited. In this work, we use the abundantly existed elemental sulfur as monomer to prepare polythioamide directly and efficiently through a facile multicomponent polymerization (MCP) of aromatic diynes, sulfur, and aliphatic diamines. This MCP can proceed smoothly in a catalyst-free manner with high atom utilization to afford polythioamide with well-defined structure, high molecular weight, and high yield. It demonstrates a convenient approach to convert elemental sulfur into functional polythioamide. Fluorescence is observed from the polythioamide, despite the absence of typical fluorophores, owing to the "heterodox clusters" composed of a large number of lone-pair-containing electron-rich heteroatoms. The emission maxima and efficiencies of the polymers depend on the formation of molecular aggregates through intrachain and intermolecular interactions such as hydrogen bonding and n → π* interaction between thioamides. This polymerization is anticipated to accelerate the development of efficient and economic MCPs toward functional polymer materials.
Sequence-controlled polymers, including biopolymers such as DNA, RNA, and proteins, have attracted much attention recently because of their sequence-dependent functionalities. The development of an efficient synthetic approach for non-natural sequence-controlled polymers is hence of great importance. Multicomponent polymerizations (MCPs) as a powerful and popular synthetic approach for functional polymers with great structural diversity have been demonstrated to be a promising tool for the synthesis of sequence-controlled polymers. In this work, we developed a facile metal-free one-pot multicomponent tandem polymerization (MCTP) of activated internal alkynes, aromatic diamines, and formaldehyde to successfully synthesize structural-regulated and sequence-controlled polyheterocycles with high molecular weights (up to 69 800 g/mol) in high yields (up to 99%). Through such MCTP, polymers with the in situ generated multisubstituted tetrahydropyrimidines or dihydropyrrolones in the backbone and inherent luminescence can be easily obtained with high atom economy and environmental benefit, which is inaccessible by other synthetic approaches.
Multicomponent polymerization (MCP) is an emerging field of polymer chemistry, which inherits a series of advantages from multicomponent reactions (MCRs), such as high efficiency, mild reaction condition, atom economy, and operational simplicity. Great efforts have been made to develop MCRs into MCPs, providing an easy access to a library of polymers with facilely tunable structures. However, MCPs of alkynes with large potential and wide prospects in the preparation of optoelectronic materials are still in its infancy, despite of the rich chemistry of alkynes. In this paper, the recent development of alkyne‐based MCPs is summarized. The multicomponent tandem polymerization with two or more steps combined in a one‐pot procedure is presented, providing an efficient and convenient new approach for the synthesis of conjugated polymers. The new trend of pursuing catalyst‐free “green” chemistry in MCPs is also introduced.
Introducing ionic interaction into a soft tetraphenylethene-based AIE-molecule furnished the compound with robust mechanochromic effects while exhibiting aggregation-induced emission enhancement properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.