The effect of silica nanoparticles on the morphology and the rheological properties was investigated in the immiscible polymer blend poly(carbonate)/poly(methyl methacrylate) (PC/PMMA). In the melt state, the linear viscoelastic properties of the nanocomposite showed a reduction effect of the silica nanoparticles on the mobility of one of the polymer which is related to the state of distribution of the silica nanoparticles. Hydrophilic and hydrophobic silica particles were used to study particle migration and their effects on the morphology and it was shown that the distribution of the nanoparticles depends on the balance of interactions between the surface of the particles and the polymer components. The effect on the coarsening kinetics was investigated in both hydrophilic and hydrophobic silica‐filled blends. Compared to the hydrophilic silica, a better compatibilization can be obtained by introducing the hydrophobic silica particles at the PC/PMMA interface as the solid barrier. POLYM. ENG. SCI., 55:1951–1959, 2015. © 2014 Society of Plastics Engineers
The effect of the silica nanoparticles on the morphology of a blend consisting of poly(methyl methacrylate) (PMMA) and the poly(styrene)-bpoly(butadiene)-b-poly(methyl methacrylate) (SBM) triblock copolymer was studied. Upon blending PMMA with SBM, macrophase separation between the block copolymer and homopolymer occurred, in which the higher molar mass chains of homopolymer separate into homopolymer-rich domains due to the 'dry-brush' regime, whereas the lower molar mass chains of homopolymer tend to be selectively solubilized in the block copolymer-rich domains due to the 'wet-brush' regime. Upon adding the hydrophilic silica nanoparticles to the PMMA/SBM blend, a significant suppression effect on the extent of macrophase separation between the homopolymer and block copolymer can be observed. It was shown that the silica particles are preferentially localized in the PMMA phase due to the strong hydrogen bonding interaction between the hydroxyl groups on the surface of silica nanoparticles with the carbonyl groups of the PMMA. The suppression effect of the silica particles may be related to the selective adsorption of the high molar mass PMMA on the surface of the silica particles, which may force the system into the 'wet-brush' regime, but this was only observed for the systems with a low silica content. For the systems with a high silica content, both the homopolymer PMMA and the PMMA block of the SBM block copolymer interact with the silica surface, which becomes the connecting part between both polymers, thereby suppressing the extent of macrophase separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.