Tasks in visual analytics differ from typical information retrieval tasks in fundamental ways. A critical part of a visual analytics is to ask the right questions when dealing with a diverse collection of information. In this article, we introduce the design and application of an integrated exploratory visualization system called Storylines. Storylines provides a framework to enable analysts visually and systematically explore and study a body of unstructured text without prior knowledge of its thematic structure. The system innovatively integrates latent semantic indexing, natural language processing, and social network analysis. The contributions of the work include providing an intuitive and directly accessible representation of a latent semantic space derived from the text corpus, an integrated process for identifying salient lines of stories, and coordinated visualizations across a spectrum of perspectives in terms of people, locations, and events involved in each story line. The system is tested with the 2006 VAST contest data, in particular, the portion of news articles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.