Space trusses are structural systems, generally made of tubes, used worldwide because of their advantages in covering long-span roofs. In addition to having a low cost, the truss weight is relatively reduced. The load capacity of these structures depends also on the strength of their node connection. Connections made with the superposition of flattened tube ends trespassed by one bolt are, generally, known as typical nodes. They are inexpensive but present eccentricities that reduce significantly the strength of such space trusses. To increase the truss load capacity, this research presents the results of an experimental program to reduce the eccentricities of the typical nodes. This reduction is done with a new type of spacer made of encapsulated concrete with steel fiber or sisal fiber. The experimental tests showed that the trusses with typical nodes collapsed under reduced load by local failure due to high distortions at the nodes. The trusses with encapsulated concrete spacer showed good results, with an increase in collapse load of 36% and failure by buckling bars.
This paper carries out the assessment of load-carrying capacity of prestressed concrete sleepers, in accordance with Brazilian Standard (ABNT NBR 11709) and AREMA Standard. In a lot of railways around the world, many prestressed concrete sleepers have failed due to Rail Seat Abrasion (RSA) and corrosion. RSA is the wear degradation underneath the rail on the surface of prestressed concrete sleepers. In this paper, a numerical study was carried out to evaluate the load-carrying capacity of the prestressed concrete sleepers, using ABAQUS software. The nonlinear using Concrete Damage Plasticity model was validated by 18 experimental results, in accordance to standards. Using the validated model, the influence of different wear depth RSA, combined with corrosion of the prestressed wires, is investigated.
This paper reports the results of three thin wythe precast sandwich panels tested under axial load. Panel reinforcements and shear connectors in the current state of precast sandwich panels in the civil construction context are evaluated. The authors measured displacement at two distinct panel heights as well as along the panel width to provide load–displacement behavior at the cross-section level and broaden the experimental data on the subject. The test results developed in this research showed good agreement with the results available in the literature. In addition, as concrete-wall panel strength equations have been linked to the compressive behavior of precast sandwich panels, a brief review of empirical formulae is also offered in this paper. Moreover, empirical data since 2005, on both concentrical and eccentrical load testing available in the literature, are also reported.
Early damage detection plays an essential role in the safe and satisfactory maintenance of structures. This work investigates techniques use only damaged structure responses. A Timoshenko beam was modeled in finite element method, and an additional mass was applied along their length. Thus, a frequency-shift curve is observed, and different damage identification techniques were used, such as the discrete wavelet transform and the derivatives of the frequency-shift curve. A new index called wavelet damage ratio(WDR) is defined as a metric to measure the damage levels. Damages were simulated like a mass discontinuity and a rotational spring (stiffness damage). Both models were compared to experimental tests since the mass added to the structure is a non-destructive tool. It was evaluated different damage levels and positions. Numerical results showed that all proposed techniques are efficient techniques for damage identification in Timoshenko's beams concerning low computational cost and practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.