Abstract(K,Na)NbO3 based ceramics are considered to be one of the most promising lead-free ferroelectrics replacing Pb(Zr,Ti)O3. Despite extensive studies over the last two decades, the mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics has not been fully understood. Here, we combine temperature-dependent synchrotron x-ray diffraction and property measurements, atomic-scale scanning transmission electron microscopy, and first-principle and phase-field calculations to establish the dopant–structure–property relationship for multi-elements doped (K,Na)NbO3 ceramics. Our results indicate that the dopants induced tetragonal phase and the accompanying high-density nanoscale heterostructures with low-angle polar vectors are responsible for the high dielectric and piezoelectric properties. This work explains the mechanism of the high piezoelectricity recently achieved in (K,Na)NbO3 ceramics and provides guidance for the design of high-performance ferroelectric ceramics, which is expected to benefit numerous functional materials.
Misfit defects in a 3C-SiC/Si (001) interface were investigated using a 200 kV high-resolution electron microscope with a point resolution of 0.194 nm. The [110] high-resolution electron microscopic images that do not directly reflect the crystal structure were transformed into the structure map through image deconvolution. Based on this analysis, four types of misfit dislocations at the 3C-SiC/Si (001) interface were determined. In turn, the strain relaxation mechanism was clarified through the generation of grow-in perfect misfit dislocations (including 90° Lomer dislocations and 60° shuffle dislocations) and 90° partial dislocations associated with stacking faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.