This paper presents an integrated approach to landslide research based on remote sensing and sensor networks. This approach is composed of three important parts: (i) landslide susceptibility mapping using remote-sensing techniques for susceptible determination of landslide spots; (ii) scaled-down landslide simulation experiments for validation of sensor network for landslide monitoring, and (iii) in situ sensor network deployment for intensified landslide monitoring. The study site is the Taziping landslide located in Hongkou Town (Sichuan, China). The landslide features generated by landslides triggered by the 2008 Wenchuan Earthquake were first extracted by means of object-oriented methods from the remote-sensing images before and after the landslides events. On the basis of correlations derived between spatial distribution of landslides and control factors, the landslide susceptibility mapping was carried out using the Artificial Neural Network (ANN) technique. Then the Taziping landslide, located in the above mentioned study area, was taken as an example to design and implement a scaled-down landslide simulation platform in Tongji University (Shanghai, China). The landslide
OPEN ACCESSRemote Sens. 2013, 5 4320 monitoring sensors were carefully investigated and deployed for rainfall induced landslide simulation experiments. Finally, outcomes from the simulation experiments were adopted and employed to design the future in situ sensor network in Taziping landslide site where the sensor deployment is being implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.