On-site manual inspection of metro tunnel leakages has been faced with the problems of low efficiency and poor accuracy. An automated, high-precision, and robust water leakage inspection method is vital to improve the manual approach. Existing approaches cannot provide the leakage location due to the lack of spatial information. Therefore, an integrated deep learning method of water leakage inspection using tunnel lining point cloud data from mobile laser scanning is presented in this paper. It is composed of three parts as follows: (1) establishment of the water leakage dataset using the acquired point clouds of tunnel linings; (2) automated leakage detection via a mask-region-based convolutional neural network; and (3) visualization and quantitative evaluation of the water leakage in 3D space via a novel triangle mesh method. The testing result reveals that the proposed method achieves automated detection and evaluation of tunnel lining water leakages in 3D space, which provides the inspectors with an intuitive overall 3D view of the detected water leakages and the leakage information (area, location, lining segments, etc.).
The detection of concrete spalling is critical for tunnel inspectors to assess structural risks and guarantee the daily operation of the railway tunnel. However, traditional spalling detection methods mostly rely on visual inspection or camera images taken manually, which are inefficient and unreliable. In this study, an integrated approach based on laser intensity and depth features is proposed for the automated detection and quantification of concrete spalling. The Railway Tunnel Spalling Defects (RTSD) database, containing intensity images and depth images of the tunnel linings, is established via mobile laser scanning (MLS), and the Spalling Intensity Depurator Network (SIDNet) model is proposed for automatic extraction of the concrete spalling features. The proposed model is trained, validated and tested on the established RSTD dataset with impressive results. Comparison with several other spalling detection models shows that the proposed model performs better in terms of various indicators such as MPA (0.985) and MIoU (0.925). The extra depth information obtained from MLS allows for the accurate evaluation of the volume of detected spalling defects, which is beyond the reach of traditional methods. In addition, a triangulation mesh method is implemented to reconstruct the 3D tunnel lining model and visualize the 3D inspection results. As a result, a 3D inspection report can be outputted automatically containing quantified spalling defect information along with relevant spatial coordinates. The proposed approach has been conducted on several railway tunnels in Yunnan province, China and the experimental results have proved its validity and feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.