Sulfur‐water chemistry plays an important role in the middle atmosphere of Venus. Ground‐based observations have found that simultaneously observed SO2 and H2O at ~64 km vary with time and are temporally anticorrelated. To understand these observations, we explore the sulfur‐water chemical system using a one‐dimensional chemistry‐diffusion model. We find that SO2 and H2O mixing ratios above the clouds are highly dependent on mixing ratios of the two species at the middle cloud top (58 km). The behavior of sulfur‐water chemical system can be classified into three regimes, but there is no abrupt transition among these regimes. In particular, there is no bifurcation behavior as previously claimed. We also find that the SO2 self‐shielding effect causes H2O above the clouds to respond to the middle cloud top in a nonmonotonic fashion. Through comparison with observations, we find that mixing ratio variations at the middle cloud top can explain the observed variability of SO2 and H2O. The sulfur‐water chemistry in the middle atmosphere is responsible for the H2O‐SO2 anticorrelation at 64 km. Eddy transport change alone cannot explain the variations of both species. These results imply that variations of species abundance in the middle atmosphere are significantly influenced by the lower atmospheric processes. Continued ground‐based measurements of the coevolution of SO2 and H2O above the clouds and new spacecraft missions will be crucial for uncovering the complicated processes underlying the interaction among the lower atmosphere, the clouds, and the middle atmosphere of Venus.
The current Venus climate is largely regulated by globally covered concentrated sulfuric acid clouds from binary condensation of sulfuric acid (H2SO4) and water (H2O). To understand this complicated H2SO4‐H2O gas‐cloud system, previous theoretical studies either adopted complicated microphysical calculations or assumed that both H2SO4 and H2O vapor follow their saturation vapor pressure. In this study, we developed a simple one‐dimensional cloud condensation model including condensation, diffusion and sedimentation of H2SO4 and H2O but without detailed microphysics. Our model is able to explain the observed vertical structure of cloud and upper haze mass loading, cloud acidity, H2SO4, and H2O vapor, and the mode‐2 particle size on Venus. We found that most H2SO4 is stored in the condensed phase above 48 km, while the partitioning of H2O between the vapor and clouds is complicated. The cloud cycle is mostly driven by evaporation and condensation of H2SO4 rather than H2O and is about seven times stronger than the H2SO4 photochemical cycle. Most of the condensed H2O in the upper clouds is evaporated before the falling particles reach the middle clouds. The cloud acidity is affected by the temperature and the condensation‐evaporation cycles of both H2SO4 and H2O. Because of the large chemical production of H2SO4 vapor and relatively inefficient cloud condensation, the simulated H2SO4 vapor above 60 km is largely supersaturated by more than two orders of magnitude, which could be tested by future observations.
In this study, a simplified semiphysical retrieval algorithm for latent heat (LH) released from precipitation over the Tibetan Plateau is derived and analyzed. The physical basis of this algorithm is that the vertical gradient of rain rate (−dR/dZ or Γ) represents the temporal rate of rain formation based on the steady state assumption, and the precipitation formation rate is closely related to the cloud formation rate, which is directly proportional to the latent heating rate. In this algorithm, the LH rate is represented as a linear function of Γ with fixed slope and intercept term determined by 3‐month Weather Research and Forecasting Model simulations over the Tibetan Plateau. Comparison to model results shows that the retrieval scheme can correctly capture the main features of LH horizontally and vertically. Comparison with results from other two widely accepted LH algorithms using Global Precipitation Measurement Dual Precipitation Radar real observations shows that this retrieval scheme generally agrees with them over low‐altitude areas but yields more convective‐type LH over the highlands with a relatively low heating center. This algorithm is specially designed for application to high altitudes. With this algorithm and the associated coefficients provided, researchers can readily do LH retrieval in their cases of interest by themselves. The only required input is the vertical profile of rain rate, which is available from current satellite precipitation radar observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.