Following publication of the original article [1], the author noticed an error in the affiliation of Hsin-Nung Shih and Kuo-Ti Peng in the author group and a typo in the author name Shu-Hsien Liao.Author name 'Shu-Hsien Liao' was incorrectly written as 'Shu-Shien Liao' .
Background Although the powerful clinical effects of radiofrequency and microwave ablation have been established, such ablation is associated with several limitations, including a small ablation size, a long ablation time, the few treatment positioning, and biosafety risks. To overcome these limitations, biosafe and efficient magnetic ablation was achieved in this study by using biocompatible liquid gallium as an ablation medium and a contrast medium for imaging. Results Magnetic fields with a frequency (f) lower than 200 kHz and an amplitude (H) × f value lower than 5.0 × 109 Am−1 s−1 were generated using the proposed method. These fields could generate an ablation size of 3 cm in rat liver lobes under a temperature of approximately 300 °C and a time of 20 s. The results of this study indicate that biomedical gallium can be used as a contrast medium for the positioning of gallium injections and the evaluation of ablated tissue around a target site. Liquid gallium can be used as an ablation medium and imaging contrast medium because of its stable retention in normal tissue for at least 3 days. Besides, the high anticancer potential of gallium ions was inferred from the self-degradation of 100 µL of liquid gallium after around 21 days of immersion in acidic solutions. Conclusions The rapid wireless ablation of large or multiple lesions was achieved through the simple multi-injection of liquid gallium. This approach can replace the currently favoured procedure involving the use of multiple ablation probes, which is associated with limited benefits and several side effects. Methods Magnetic ablation was confirmed to be highly efficient by the consistent results obtained in the simulation and in vitro tests of gallium and iron oxide as well as the electromagnetic specifics and thermotherapy performance comparison detailed in this study Ultrasound imaging, X-ray imaging, and magnetic resonance imaging were found to be compatible with the proposed magnetic ablation method. Self-degradation analysis was conducted by mixing liquid gallium in acidic solutions with a pH of approximately 5–7 (to imitate a tumour-containing microenvironment). X-ray diffraction was used to identify the gallium oxides produced by degraded gallium ions.
The diagnosis of liquid and solid biopsies by different instruments makes the clinic loading difficult in many aspects. Given the compositions of magnetic particles (MPs) with diverse characterizations and the innovative acoustic type of vibration sample magnetometer (VSM), the versatile, accessible magnetic diagnosis platform was proposed to meet clinical demands, such as low loading for multiple biopsies. In liquid biopsies of alpha-fetoprotein (AFP) standard solutions and subject serums, molecular concentration was analyzed from saturation magnetization by the soft type of Fe3O4 MPs with AFP bioprobe coating. In the phantom mixture simulated as bounded MPs in tissue, the bounded MPs was evaluated from the area of the hysteresis loop by hard type of cobalt MPs without bio-probes coating. Not only a calibration curve was founded for many hepatic cell carcinoma stages, but also microscale images verified the Ms increase due to magnetic protein clusters, etc. Hence, its wide populations in clinics could be expected.
Ablation is a clinical cancer treatment, but some demands are still unsatisfied, such as electromagnetic interferences amongst multiple ablation needles during large tumour treatments. This work proposes a physical synthesis for composite particles of biocompatible iron oxide particles and liquid metal gallium (Ga) with different alternative-current (AC)-magnetic-field-induced heat mechanisms of magnetic particle hyperthermia and superior resistance heat. By some imaging, X-ray diffraction, and vibrating sample magnetometer, utilised composite particles were clearly identified as the cluster of few iron oxides using the small weight ratio of high-viscosity liquid metal Ga as conjugation materials without surfactants for physical targeting of limited fluidity. Hence, well penetration inside the tissue and the promotion rate of heat generation to fit the ablation requirement of at least 60 °C in a few seconds are achieved. For the injection and the post-injection magnetic ablations, the volume variation ratios of mice dorsal tumours on Day 12 were expressed at around one without tumour growth. Its future powerful potentiality is expected through a percutaneous injection.
The objective of the proposed human–machine cooperation (HMC) workstation is to both rapidly detect calcium-based fish bones in masses of minced fish floss and visually guide operators in approaching and removing the detected fish bones by hand based on the detection of fingernails or plastic-based gloves. Because vibration is a separation mechanism that can prevent absorption or scattering in thick fish floss for UV fluorescence detection, the design of the HMC workstation included a vibration unit together with an optical box and display screens. The system was tested with commonly used fish (swordfish, salmon, tuna, and cod) representing various cooking conditions (raw meat, steam-cooked meat, and fish floss), their bones, and contaminating materials such as derived from gloves made of various types of plastic (polyvinylchloride, emulsion, and rubber) commonly used in the removal of fish bones. These aspects were each investigated using the spectrum analyzer and the optical box to obtain and analyze the fluorescence spectra and images. The filter was mounted on a charge-coupled device, and its transmission-wavelength window was based on the characteristic band for fish bones observed in the spectra. Gray-level AI algorithm was utilized to generate white marker rectangles. The vibration unit supports two mechanisms of air and downstream separation to improve the imaging screening of fish bones inside the considerable flow of fish floss. Notably, under 310 nm ultraviolet B (UVB) excitation, the fluorescence peaks of the raw fillets, steam-cooked meat, and fish floss were observed at for bands at longer wavelengths (500–600 nm), whereas those of the calcium and plastic materials occurred in shorter wavelength bands (400–500 nm). Perfect accuracy of 100% was achieved with the detection of 20 fish bones in 2 kg of fish floss, and the long test time of around 10–12 min results from the manual removal of these fish bones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.