Beclin 1, a protein essential for autophagy, regulates autophagy by interacting with Vps34 and other cofactors to form the Beclin 1 complex. Modifications of Beclin 1 may lead to the induction, inhibition or fine-tuning of the autophagic response under a variety of conditions. Here we show that Beclin 1 is acetylated by p300 and deacetylated by SIRT1 at lysine residues 430 and 437. In addition, the phosphorylation of Beclin 1 at S409 by CK1 is required for the subsequent p300 binding and Beclin 1 acetylation. Beclin 1 acetylation inhibits autophagosome maturation and endocytic trafficking by promoting the recruitment of Rubicon. In tumour xenografts, the expression of 2KR mutant Beclin 1 (substitution of K430 and K437 to arginines) leads to enhanced autophagosome maturation and tumour growth suppression. Therefore, our study identifies an acetylation-dependent regulatory mechanism governing Beclin 1 function in autophagosome maturation and tumour growth.
PTEN (phosphatase and tensin homolog), a tumor suppressor frequently mutated in human cancer, has various cytoplasmic and nuclear functions. PTEN translocates to the nucleus from the cytoplasm in response to oxidative stress. However, the mechanism and function of the translocation are not completely understood. In this study, topotecan (TPT), a topoisomerase I inhibitor, and cisplatin (CDDP) were employed to induce DNA damage. The results indicate that TPT or CDDP activates ATM (ATM serine/threonine kinase), which phosphorylates PTEN at serine 113 and further regulates PTEN nuclear translocation in A549 and HeLa cells. After nuclear translocation, PTEN induces autophagy, in association with the activation of the p-JUN-SESN2/AMPK pathway, in response to TPT. These results identify PTEN phosphorylation by ATM as essential for PTEN nuclear translocation and the subsequent induction of autophagy in response to DNA damage.
Autophagy is a degradative pathway that delivers cellular components to the lysosome for degradation. The role of autophagy in cell differentiation is poorly understood. Here we show that CaMKII can directly phosphorylate Beclin 1 at Ser90 to promote K63-linked ubiquitination of Beclin 1 and activation of autophagy. Meanwhile, CaMKII can also promote K63-linked ubiquitination of inhibitor of differentiation 1/2 (Id-1/2) by catalyzing phosphorylation of Id proteins and recruiting TRAF-6. Ubiquitinated Id-1/Id-2 can then bind to p62 and be transported to autolysosomes for degradation. Id degradation promotes the differentiation of neuroblastoma cells and reduces the proportion of stem-like cells. Our study proposes a mechanism by which autophagic degradation of Id proteins can regulate cell differentiation. This suggests that targeting of CaMKII and the regulation of autophagic degradation of Id may be an effective therapeutic strategy to induce cell differentiation in neuroblastoma.
Dual PI3K/mTOR(phosphatidylinositol 3-kinase/mammalian target of rapamycin) inhibitors are being evaluated clinically for the treatment of tumors with a hyperactivated PI3K/mTOR pathway. However, unexpected outcomes were obtained in clinical studies of cancer patients with an aberrant PI3K pathway. In clinical trials, applicable combination regimens are not yet available. In this study, using an integrated analysis of acquired BEZ235-resistant nasopharyngeal carcinoma cells, we demonstrate that DNA methyltransferase is a key modulator and a common node upstream of the AKT/mTOR and PDK1/MYC pathways, which are activated in cancer cells with acquired BEZ235 resistance. DNA methyltransferases were upregulated and induced PTEN and PPP2R2B gene hypermethylation, which downregulated their expression in BEZ235-resistant cancer cells. Reduced PTEN and PPP2R2B expression correlated with activated AKT/mTOR and PDK1/MYC pathways and conferred considerable BEZ235 resistance in nasopharyngeal carcinoma. Targeting methyltransferases in combination with BEZ235 sensitized BEZ235-resistant cells to BEZ235 in vitro and in vivo, suggesting the potential clinical application of this strategy to overcome BEZ235 resistance.
Abstract. Hirsutanol A is a novel sesquiterpene compound purified from the marine fungus Chondrostereum sp in the coral Sarcophyton tortuosum. Our previous studies had demonstrated that hirsutanol A exerted potent cytotoxic effect in many kinds of cancer cell lines. Here, the anticancer molecular mechanisms of hirsutanol A were investigated in breast cancer MCF-7 cells. The results showed that hirsutanol A could inhibit cell proliferation, elevate reactive oxygen species (ROS) level, and induce apoptosis and autophagy. Co-treatment with the potent antioxidant agent N-acetyl-L-cysteine could effectively reverse the effect of enhanced ROS production, which in turn, reduces growth inhibition, apoptosis, and autophagy mediated by hirsutanol A. In addition, blocking autophagy by bafilomycin A1 or Atg7-siRNA could synergistically enhance the antiproliferative effect and apoptosis induced by hirsutanol A. These data suggested that hirsutanol A could induce apoptosis and autophagy via accumulation of ROS and co-treatment with an autophagy inhibitor could sensitize MCF-7 cells to hirsutanol A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.