Intervertebral disc (IVD) degeneration contributes largely to pathoanatomical and degenerative changes of spinal structure that increase the risk of low back pain. Apoptosis in nucleus pulposus (NP) can aggravate IVD degeneration, and increasing studies have shown that interventions targeting NP cell apoptosis can ameliorate IVD degeneration, exhibiting their potential for use as therapeutic strategies. Recent data have shown that advanced glycation end products (AGEs) accumulate in NP tissues in parallel with the progression of IVD degeneration and form a microenvironment of oxidative stress. This study examined whether AGEs accumulation aggravates NP cell apoptosis and IVD degeneration, and explored the mechanisms underlying these effects. We observed that the viability and proliferation of human NP cells were significantly suppressed by AGEs treatment, mainly due to apoptosis. Furthermore, activation of the mitochondrial apoptosis pathway was detected after AGEs treatment. In addition, the molecular data showed that AGEs could significantly aggravate the generation of mitochondrial reactive oxygen species and prolonged activation of the mitochondrial permeability transition pore, as well as the increased level of Bax protein and decreased level of Bcl-2 protein in mitochondria. These effects could be reduced by antioxidant (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) and Visomitin (SKQ1). Importantly, we identified that impairment of Sirtuin3 (SIRT3) function and the mitochondrial antioxidant network were vital mechanisms in AGEs-induced oxidative stress and secondary human NP cell apoptosis. Finally, based on findings that nicotinamide mononucleotide (NMN) could restore SIRT3 function and rescue human NP cell apoptosis through adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor-γ coactivator 1α (AMPK-PGC-1α) pathway in vitro, we confirmed its protective effect on AGEs-induced IVD degeneration in vivo. In conclusion, our data demonstrate that SIRT3 protects against AGEs-induced human NP cell apoptosis and IVD degeneration. Targeting SIRT3 to improve mitochondrial redox homeostasis may represent a potential therapeutic strategy for attenuating AGEs-associated IVD degeneration.
Intervertebral disc degeneration is widely recognized as a cause of lower back pain, neurological dysfunction and other musculoskeletal disorders. The major inflammatory cytokine IL‐1β is associated with intervertebral disc degeneration; however, the molecular mechanisms that drive IL‐1β production in the intervertebral disc, especially in nucleus pulposus (NP) cells, are unknown. In some tissues, advanced glycation end products (AGEs), which accumulate in NP tissues and promote its degeneration, increase oxidative stress and IL‐1β secretion, resulting in disorders, such as obesity, diabetes mellitus and ageing. It remains unclear whether AGEs exhibit similar effects in NP cells. In this study, we observed significant activation of the NLRP3 inflammasome in NP tissues obtained from patients with degenerative disc disease compared to that with idiopathic scoliosis according to results detected by Western blot and immunofluorescence. Using NP cells established from healthy tissues, our in vitro study revealed that AGEs induced an inflammatory response in NP cells and a degenerative phenotype in a NLRP3‐inflammasome‐dependent manner related to the receptor for AGEs (RAGE)/NF‐κB pathway and mitochondrial damage induced by mitochondrial reactive oxygen species (mtROS) generation, mitochondrial permeability transition pore (mPTP) activation and calcium mobilization. Among these signals, both RAGE and mitochondrial damage primed NLRP3 and pro‐IL‐1β activation as upstream signals of NF‐κB activity, whereas mitochondrial damage was critical for the assembly of inflammasome components. These results revealed that accumulation of AGEs in NP tissue may initiate inflammation‐related degeneration of the intervertebral disc via activation of the NLRP3 inflammasome.
Objective. To investigate the prevalence of recreational drug use and its relationship with HIV infection among Chinese MSM. Methods. A cross-sectional study of 625 MSM was conducted in Shenyang, China. Questionnaires were administered to collect information on recreational drug use and sexual behaviors. Blood specimens were collected to test for HIV and syphilis antibodies. Results. Nearly a quarter (23.2%, 145/625) of participants reported ever using recreational drugs, among which alkyl nitrites (poppers) was the most frequently used drug (19.2%), followed by methylmorphine phosphate (5.1%), methamphetamine (4.0%), and ketamine (0.8%). The overall prevalence of HIV and syphilis was 9.6% and 10.4%, respectively. Multivariate logistic analysis showed that recreational drug use was significantly correlated with age ≤25 year (adjusted odds ratio [aOR] = 1.6, 95% CI, 1.1–2.9), single marital status (aOR = 2.1, 95% CI, 1.2–3.6), and seeking male sexual partners mainly through Internet (aOR = 1.8, 95% CI, 1.8–2.8). Recreational drug use was independently associated with an increased risk of HIV infection (aOR = 3.5, 95% CI, 2.0–6.2). Conclusions. Our study suggests that recreational drug use is popular among Chinese MSM and is associated with significantly increased HIV infection risk. HIV prevention intervention programs should reduce both drug use and risky sexual behaviors in this population.
Intervertebral disc degeneration (IDD) is a common and early-onset pathogenesis in the human lifespan that can increase the risk of low back pain. More clarification of the molecular mechanisms associated with the onset and progression of IDD is likely to help establish novel preventive and therapeutic strategies. Recently, mitochondria have been increasingly recognized as participants in regulating glycolytic metabolism, which has historically been regarded as the main metabolic pathway in intervertebral discs due to their avascular properties. Indeed, mitochondrial structural and functional disruption has been observed in degenerated nucleus pulposus (NP) cells and intervertebral discs. Multilevel and well-orchestrated strategies, namely, mitochondrial quality control (MQC), are involved in the maintenance of mitochondrial integrity, mitochondrial proteostasis, the mitochondrial antioxidant system, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Here, we address the key evidence and current knowledge of the role of mitochondrial function in the IDD process and consider how MQC strategies contribute to the protective and detrimental properties of mitochondria in NP cell function. The relevant potential therapeutic treatments targeting MQC for IDD intervention are also summarized. Further clarification of the functional and synergistic mechanisms among MQC mechanisms may provide useful clues for use in developing novel IDD treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.