The integration of novel surface-enhanced Raman scattering (SERS) nanoprobes and a microfluidic dielectrophoresis (DEP) device is developed for rapid on-line SERS detection of Salmonella enterica serotype Choleraesuis and Neisseria lactamica. The SERS nanoprobes are prepared by immobilization of specific antibody onto the surface of nanoaggregate-embedded beads (NAEBs), which are silica-coated, dye-induced aggregates of a small number of gold nanoparticles (AuNPs). Each NAEB gives highly enhanced Raman signals owing to the presence of well-defined plasmonic hot spots at junctions between AuNPs. Herein, the on-line SERS detection and accurate identification of suspended bacteria with a detection capability down to a single bacterium has been realized by the NAEB-DEP-Raman spectroscopy biosensing strategy. The practical detection limit with a measurement time of 10 min is estimated to be 70 CFU mL(-1) . In comparison with whole-cell enzyme-linked immunosorbent assay (ELISA), the SERS-nanoprobe-based biosensing method provides advantages of higher sensitivity and requiring lower amount of antibody in the assay (100-fold less). The total assay time including sample pretreatment is less than 2 h. Hence, this sensing strategy is promising for faster and effective on-line multiplex detection of single pathogenic bacterium by using different bioconjugated SERS nanoprobes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.