Background: Neurofeedback training (NFT) has recently been proposed as a valuable technique for cognitive enhancement and psychiatric amelioration. However, effect of NFT of alpha activity on memory is controversial. The current study analyzed previous works in terms of randomized and blinded analyses, training paradigms, and participant characteristics to validate the efficacy of alpha NFT on memory in a healthy population.Objectives: A systematic meta-analysis of studies with randomized controlled trials was performed to explore the effect of alpha NFT on working memory (WM) and episodic memory (EM) in a healthy population.Methods: We searched PubMed, Embase, and Cochrane Library from January 1, 1999, to November 30, 2019. Previous studies were evaluated with the Cochrane risk of bias (RoB). A meta-analysis calculating absolute weighted standardized mean difference (SMD) using random-effects models was employed. Heterogeneity was estimated using I2 statistics. Funnel plots and Egger's test were performed to evaluate the quality of evidence.Results: Sixteen studies with 217 healthy participants in the control group and 210 participants in the alpha group met the eligibility criteria. Alpha NFT studies with WM measures presented little publication bias (P = 0.116), and 5 of 7 domains in the Cochrane RoB exhibited a low risk of bias. The overall effect size from 14 WM studies was 0.56 (95% CI 0.31–0.81, P < 0.0001; I2 = 28%). Six EM studies exhibited an effect size of 0.77 (95% CI 0.06–1.49, P = 0.03; I2 = 77%).Conclusion: Meta-analysis results suggest that alpha NFT seems to have a positive effect on the WM and EM of healthy participants. Future efforts should focus on the neurophysiological mechanisms of alpha NFT in memory.
BackgroundDeep brain stimulation (DBS) is an effective treatment for movement disorders and neurological/psychiatric disorders. DBS has been approved for the control of Parkinson disease (PD) and epilepsy.ObjectivesA systematic review and possible future direction of DBS system studies is performed in the open loop and closed-loop configuration on PD and epilepsy.MethodsWe searched Google Scholar database for DBS system and development. DBS search results were categorized into clinical device and research system from the open-loop and closed-loop perspectives.ResultsWe performed literature review for DBS on PD and epilepsy in terms of system development by the open loop and closed-loop configuration. This study described development and trends for DBS in terms of electrode, recording, stimulation, and signal processing. The closed-loop DBS system raised a more attention in recent researches.ConclusionWe overviewed development and progress of DBS. Our results suggest that the closed-loop DBS is important for PD and epilepsy.
The main purpose of this study was to investigate the effects of neurofeedback training (NFT) of theta activity on working memory (WM) and episodic memory (EM) in healthy participants via a systematic review and meta-analysis. A total of 337 articles obtained from electronic databases were assessed; however, only 11 articles met the criteria for meta-analysis after manually screening and eliminating unnecessary studies. A meta-analysis calculating the Hedges’ g effect size metric with 95% confidence intervals using random effects models was employed. Heterogeneity was estimated using I2 statistics. Theta NFT is effective in improving memory outcomes, including WM with a Hedges’ g of 0.56 [0.10; 1.02] (I2 = 62.9% and p = 0.02), and EM with a Hedges’ g of 0.62 [0.13; 1.10] (I2 = 42.04% and p = 0.01). Overall, the results suggest that theta NFT seems to be useful as nonpharmacological/adjunct training to improve WM and EM in healthy participants.
Treatment of grating stimulation has been used in amblyopia for decades, but high dropout rate and inconvenience for daily practice occur in previous studies. We developed a home-based portable system with rotating grating stimulation on a tablet. Thirty anisometropic amblyopic children were randomly allocated into the control or Grating group. They drew contour of the picture under patch of a better eye for 6 months. Best-corrected visual acuity (BCVA), grating acuity (GA), and contrast sensitivity (CS) were assessed at the baseline, 1st, 2nd, 3rd, and 6th months of training. All participants completed the 6-month training. Patched eyes of both groups exhibited no difference. Trained eyes of the control group had significantly slight improvement in BCVA and GA. In particular, the Grating group exhibited significantly higher BCVA, GA, and CS compared with those of the control group at the 3rd and 6th months of training. Moreover, percentage of the Grating group with great improvement (BCVA ≥ 0.3 or CS ≥ 0.3) was significantly larger than those of the control group at the 3rd or 6th months of training. The portable grating stimulation system demonstrates its trainability by no dropout and effectiveness by significant improvements in all assessments through a well experimental design.Trial Registration: ClinicalTrials.gov NCT04213066, registered 30/12/2019, https://clinicaltrials.gov/ct2/show/NCT04213066.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.