Investigations on the fatigue crack growth of commercial pure titanium are carried out with cruciform specimens under different biaxial load ratios (λ = 0, 0.5, and 1) and crack inclination angles (β = 90°, 60°, and 45°) in this paper. Based on the finite element results, the modified solution of stress intensity factors KI and KII for cruciform specimens containing mixed mode I-II crack is obtained by considering crack size, biaxial load ratio, and crack inclination angles. The experimental results show that the maximum tangential stress criterion is fit for the prediction of crack initiation angles for mixed model I-II crack under uniaxial or biaxial loading condition. When the biaxial load ratio increases, the crack propagation angle becomes smaller, and so does the fatigue crack growth rate of mode I crack or mixed mode I-II crack. Based on an equivalent stress intensity factor, a new valid stress intensity factor is proposed to better describe the biaxial fatigue crack growth behavior, which can demonstrate the contribution of mode I and mode II of stress intensity factor.
The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (β = 90°, 60°, 45°) under various biaxial load ratios (λ = 0, 0.5, 1) and different stress ratios (R = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.