Palladium-copper bimetallic catalysts supported over different supporters were prepared by chemical reduction method, and their catalytic performance was investigated with the hydrogenation of nitrate ions in drinking water under mild conditions. The results show that Pd-Cu/ZSM-5 bimetallic catalyst has the highest catalytic activity among all used catalysts. In addition, nitrate conversion influenced by metal content, metal molar ratio (Pd:Cu) and the addition of CO2 are also discussed. It is well established that the addition of CO2 has changed the reduction path of the intermediate nitrite, but is no influence on the steps of nitrate-to-nitrite reduction. In the end, the mechanism of catalytic nitrate reduction was discussed on the basis the literature results.
Spinel-perovskite multiferroics of NiFe2O4/BiFeO3 nanoparticles were prepared by modified Pechini method. The structure and morphology of the composites were examined by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the composites consisted of spinel NiFe2O4 and perovskite BiFeO3 after annealed at 700°C for 2h, and the particle size ranges from 40 to 100nm. VSM and ME results indicated that the nanocomposites exhibited both tuning magnetic properties and a ME effect. The ME effect of the nanocomposites strongly depended on the magnetic bias and magnetic field frequency.
A new biological deodorization technology which is used in Tianjin Jizhuangzi Sewage Plant was introduced in this paper. The geographical position of Jizhuangzi Wastewater Treatment Plant is special. The plant has been surrounded by the living area. The problem of odor to people has been serious until a new deodorization technology is used. It is a source deodorization technology used special filler through vaccination, induction and catalytic to removed the malodorous sources. A special microbial incubator is used to culture and proliferate effective deodorant microorganisms on activated sludge sewage in the biological pool of the plant and then the sludge containing deodorant microbial reflowed to the wastewater inlet. The malodorous substances in the water are removed through adsorption, cohesion, biotransformation degradation and so on by the deodorant microbial. The case indicates that this technology is effective in practice and good for popularization. And this technology with simple process showed significant effect compared with other deodorant technologies and was more secure and convenient to build and run with low cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.