HMGB1 and RAGE signaling appear pivotal mediators of surgery-induced cognitive decline and may contribute to the changes in BBB permeability after peripheral surgical trauma.
BackgroundPostoperative cognitive dysfunction (POCD) is common following cardiac and non-cardiac surgery, but the pathogenic mechanisms remain unknown. Many studies suggest that an inflammatory response is a key contributor to POCD. The current meta-analysis shows that the levels of peripheral inflammatory markers are associated with POCD.MethodsAn online search was performed to identify peer-reviewed studies without language restriction that measured peripheral inflammatory markers of patients with and without POCD, using PubMed, ScienceDirect, SinoMed and the National Knowledge Infrastructure database. Extracted data were analyzed with STATA (version 12).The standardized mean difference (SMD) and the 95% confidence interval (95%CI) were calculated for each outcome using a random effect model. Tests of heterogeneity assessment of bias, and meta-regression were performed in the meta-analysis.ResultsA total of 13 studies that measured the concentrations of peripheral inflammatory markers were included. The current meta-analysis found significantly higher concentrations of S-100β(SMD[95%CI]) (1.377 [0.423, 2.331], p-value < 0.001, N [POCD/non-POCD] =178/391, 7 studies), and interleukin(IL)-6 (SMD[95%CI]) (1.614 [0.603,2.624], p-value < 0.001, N[POCD/non-POCD] = 91/99, 5 studies), but not of neuron specific enolase, interleukin-1β, or tumor necrosis factor-α , in POCD compared with patients without POCD. In meta-regression analyses, a significant positive association was found between the SMD and the preoperative interleukin-6 peripheral blood concentration in patients with POCD (Coef.= 0.0587, p-value=0.038, 5 studies).ConclusionsThis study shows that POCD is indeed correlated with the concentrations of peripheral inflammatory markers, particularly interleukin-6 and S-100β.
Surgical stress and inflammatory response induce the release of catecholamines and PGs, which may be key factors in facilitating cancer recurrence through immunosuppression. Animal studies have suggested the efficacy of perioperative blockades of catecholamines and PGs in reducing immunosuppression. In this study, to our knowledge, we present the first report of the effects of perioperative propranolol and/or parecoxib on peripheral regulatory T cells (Tregs) in breast cancer patients. Patients were randomly assigned to control, propranolol, parecoxib, and propranolol plus parecoxib groups. We demonstrated that levels of circulating epinephrine, norepinephrine, and PGE2 increased in response to surgery. Meanwhile, peripheral FOXP3 mRNA level and Treg frequencies were elevated on postoperative day 7. Propranolol administration, rather than parecoxib, attenuated such elevation of Tregs, indicating the critical roles for catecholamines in surgery-induced promotion of Tregs. Besides, propranolol plus parecoxib treatment demonstrated no additive or synergistic effects. Furthermore, a study of Treg activity on CD4+ T cell responses to specific tumor Ags was performed in the control and propranolol groups. Propranolol abrogated the increased Treg activity and accompanying suppression of CD4+ T cell responses after surgery. Finally, we conducted ex vivo experiments on the effects of varying concentrations of epinephrine and/or propranolol on Treg proliferation over PBMCs from breast cancer patients, to provide further direct evidence strengthening our clinical observations. Epinephrine markedly promoted Treg proliferation, whereas propranolol prevented such enhancement effect. In conclusion, our study highlights beneficial roles for propranolol in inhibiting Treg responses in vivo and in vitro, and demonstrates that propranolol could alleviate surgical stress–induced elevation of Tregs in breast cancer patients.
Objectives
Postoperative cognitive dysfunction (POCD) is a common clinical complication, with an underlying pathophysiology linked to heightened levels of neuroinflammation. However, it requires clarification as to whether the depth of anesthesia modulates postoperative cognitive dysfunction. This study investigated the association between depth of anesthesia and POCD in elderly patients undergoing abdominal surgery.
Methods
A total of 120 patients aged 60 years or older who were planned for abdominal surgery under total intravenous anesthesia were included in this study. The depth of anesthesia was guided by monitoring Bispectral Index (BIS) data. All study participants completed a battery of nine neuropsychological tests before surgery and at 7 days and 3 months after surgery. POCD was calculated by using the reliable change index. Plasma concentration of C‐reactive protein (CRP), interleukin (IL)‐1β, IL‐10, S‐100β, and norepinephrine (NE) were measured.
Results
The incidence of POCD at 7 days after surgery in the deep anesthesia group was 19.2% (10/52), which was significantly lower (p = 0.032) than the light anesthesia group 39.6% (21/53). The depth of anesthesia had no effect on POCD at 3 months after surgery (10.3% vs 14.6%, respectively, p = 0.558). Similarly, plasma levels of CRP and IL‐1β in deep anesthesia group were lower than that in light anesthesia group at 7 days after surgery (p < 0.05), but not at 3 months after surgery (p > 0.05). There were no significant differences in the plasma concentration of IL‐10, S‐100β, and NE between the groups (p > 0.05).
Conclusions
Deep anesthesia under total intravenous anesthesia could decrease the occurrence of short‐term POCD and inhibit postoperative peripheral inflammation in elderly patients undergoing abdominal surgery, compared with light anesthesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.