We develop and characterize a symmetry-protected superconducting qubit that offers simultaneous exponential suppression of energy decay from charge and flux noises, and dephasing from flux noise. The qubit consists of a Cooper-pair box (CPB) shunted by a superinductor, forming a superconducting loop. Provided the offset charge on the CPB island is an odd number of electrons, the qubit potential corresponds to that of a cos (φ/2) Josephson element, preserving the parity of fluxons in the loop via Aharonov-Casher interference. In this regime, the logical-state wavefunctions reside in disjoint regions of Hilbert space, thereby ensuring protection against energy decay. By switching the protection on, we observe a tenfold increase of the decay time, reaching up to 100 μs. Though the qubit is sensitive to charge noise, the sensitivity is much reduced in comparison with the charge qubit, and the charge-noise-induced dephasing time of the current device exceeds 1 μs. Implementation of full dephasing protection can be achieved in the next-generation devices by combining several cos(φ/2) Josephson elements in a small array.
We have studied superconducting coplanar-waveguide (CPW) resonators fabricated from disordered (granular) films of Aluminum. Very high kinetic inductance of these films, inherent to disordered materials, allows us to implement ultra-short (200 µm at a 5GHz resonance frequency) and high-impedance (up to 5 kΩ) half-wavelength resonators. We have shown that the intrinsic losses in these resonators at temperatures 250 mK are limited by resonator coupling to two-level systems in the environment. The demonstrated internal quality factors are comparable with those for CPW resonators made of conventional superconductors. High kinetic inductance and well-understood losses make these disordered Aluminum resonators promising for a wide range of microwave applications which include kinetic inductance photon detectors and superconducting quantum circuits. arXiv:1807.00210v1 [cond-mat.supr-con]
We have designed superinductors made of strongly disordered superconductors for implementation in "hybrid" superconducting quantum circuits. The superinductors have been fabricated as meandered nanowires made of granular Aluminum films. Optimization of the device geometry enabled realization of superinductors with the inductance ∼ 1 µH and the self-resonance frequency over 3 GHz. These compact superinductors are attractive for a wide range of applications, from superconducting circuits for quantum computing to microwave elements of cryogenic parametric amplifiers and kinetic-inductance photon detectors.
Josephson junctions (JJs) with Josephson energy EJ≲1 K are widely employed as non-linear elements in superconducting circuits for quantum computing operating at milli-Kelvin temperatures. In the qubits with small charging energy EC ( EJ/EC≫1 ), such as the transmon, the incoherent phase slips (IPS) might become the dominant source of dissipation with decreasing EJ. In this work, a systematic study of the IPS in low-EJ JJs at milli-Kelvin temperatures is reported. Strong suppression of the critical (switching) current and a very rapid growth of the zero-bias resistance due to the IPS are observed with decreasing EJ below 1 K. With further improvement of coherence of superconducting qubits, the observed IPS-induced dissipation might limit the performance of qubits based on low-EJ junctions. These results point the way to future improvements of such qubits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.