This paper addresses the problem of background maintenance for foreground object detection. A Multimodel Background Maintenance (MBM) framework that contains two principal features is proposed. Under this framework, a pure time-varying background image is maintained and learned using the statistical information of the multi-model Gaussian distribution with principle features. The principal features consist of static and dynamic pixels to represent the characteristic of background. Experiments are conducted on ten image sequences containing targets of interest in a variety of environments. Quantitative evaluation and comparison with the existing method show that the proposed method provides much improved results. Ninth IEEE International Symposium on Multimedia 2007 -Workshops 0-7695-3084-2/07 $25.00
This paper addresses the problem of background maintenance for foreground object detection. A Multimodel Background Maintenance (MBM) framework that contains two principal features is proposed. Under this framework, a pure time-varying background image is maintained and learned using the statistical information of the multi-model Gaussian distribution with principle features. The principal features consist of static and dynamic pixels to represent the characteristic of background. Experiments are conducted on ten image sequences containing targets of interest in a variety of environments.Quantitative evaluation and comparison with the existing method show that the proposed method provides much improved results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.