Although recent articles state that jellyfish populations are increasing, most available evidence shows that jellyfish abundances fluctuate with climatic cycles. Reports of increasing problems with jellyfish, especially in East Asia, are too recent to exclude decadal climate cycles. Jellyfish are infamous for their direct negative effects on human enterprise; specifically, they interfere with tourism by stinging swimmers, fishing by clogging nets, aquaculture by killing fish in net-pens and power plants by clogging cooling-water intake screens. They also have indirect effects on fisheries by feeding on zooplankton and ichthyoplankton, and, therefore, are predators and potential competitors of fish. Ironically, many human activities may contribute to increases in jellyfish populations in coastal waters. Increased jellyfish and ctenophore populations often are associated with warming caused by climate changes and possibly power plant thermal effluents. Jellyfish may benefit from eutrophication, which can increase small-zooplankton abundance, turbidity and hypoxia, all conditions that may favor jellyfish over fish. Fishing activities can remove predators of jellyfish and zooplanktivorous fish competitors as well as cause large-scale ecosystem changes that improve conditions for jellyfish. Aquaculture releases millions of jellyfish into Asian coastal waters yearly to enhance the jellyfish fishery. Aquaculture and other marine structures provide favorable habitat for the benthic stages of jellyfish. Changes in the hydrological regime due to dams and other construction can change the salinity to favor jellyfish. Accidental introductions of non-native gelatinous species into disturbed ecosystems have led to blooms with serious consequences. In many coastal areas, most of these environmental changes occur simultaneously. We summarize cases of problem jellyfish blooms and the evidence for anthropogenic habitat disruptions that may have caused them. Rapid development in East Asia makes that region especially vulnerable to escalating problems. We conclude that human effects on coastal environments are certain to increase, and jellyfish blooms may increase as a consequence.
Lo, W-T., Purcell, J. E., Hung, J-J., Su, H-M., and Hsu, P-K. 2008. Enhancement of jellyfish (Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. – ICES Journal of Marine Science, 65: 453–461. Blooms of the moon jellyfish, Aurelia aurita, often occur in coastal waters that are heavily affected by human construction, such as harbours. Tapong Bay is a hypertrophic lagoon in southwestern Taiwan that was studied between August 1999 and September 2004. The removal of extensive oyster-culture rafts in June 2002 provided a “natural” experiment to examine the effects of aquaculture on processes and communities in the lagoon. The removal caused many changes in the ecosystem, including increases in flushing, light penetration, dissolved oxygen, salinity, chlorophyll a, primary production, and zooplankton, but decreases in nutrients, periphyton, and dramatically reduced populations of bivalves, zooplanktivorous fish, and jellyfish (A. aurita). We conclude that environmental and trophic conditions were favourable for jellyfish throughout the study period. Therefore, we believe that aquaculture rafts enhanced jellyfish populations by three probable mechanisms: the rafts provided substrate and shading for the larval settlement and polyp colony formation, and the rafts restricted water exchange in the lagoon. Aquaculture is increasing rapidly in Asia, and the problems associated with jellyfish may also increase.
Jellyfish blooms cause problems worldwide, and they may increase with global warming, water pollution, and over fishing. Benthic polyps (scyphistomae) asexually produce buds and small jellyfish (ephyrae), and this process may determine the population size of the large, swimming scyphomedusae. Environmental factors that affect the asexual reproduction rates include food, temperature, salinity, and light. In this study, polyps of Aurelia aurita (L.), which inhabit Tapong Bay, southwest Taiwan, were tested in nine combinations of temperature (20, 25, 30°C) and light intensity (372, 56, and 0 lux) in a 12 h light-12 h dark photoperiod. Production of new buds decreased with warmer temperature and stronger light intensity. Warm temperature accelerated strobilation and increased the daily production of ephyrae. The proportion of ephyrae of total asexual reproduction (new buds ? ephyrae) increased dramatically in warmer temperature and more light. Survival was reduced in the highest temperature. Strobilation did not occur in the lowest temperature in darkness. All measures of total asexual reproduction indicated that mid-to high temperatures would lead to faster production of more jellyfish. Continuous high temperatures might result in high polyp mortality. Light affected asexual reproduction less than did temperature, only significantly accelerating the strobilation rate. Because the interactive effects of light and temperature were significant for the time period polyps survived and the potential production of jellyfish polyp -1 , combined light and temperature effects probably are important for strobilation in situ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.