Sepsis, a life-threatening organ dysfunction, is not caused by direct damage of pathogens and their toxins but by the host’s severe immune and metabolic dysfunction caused by the damage when the host confronts infection. Previous views focused on the damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), including metabolic proinflammatory factors in sepsis. Recently, new concepts have been proposed to group free fatty acids (FFAs), glucose, advanced glycation end products (AGEs), cholesterol, mitochondrial DNA (mtDNA), oxidized phospholipids (OxPLs), ceramides, and uric acid into metabolism-associated molecular patterns (MAMPs). The concept of MAMPs will bring new guidance to the research and potential treatments of sepsis. Nowadays, sepsis is regarded as closely related to metabolic disorders, and MAMPs play an important role in the pathogenesis and development of sepsis. According to this view, we have explained MAMPs and their possible roles in the pathogenesis of sepsis. Next, we have further explained the specific functions of different types of MAMPs in the metabolic process and their interactional relationship with sepsis. Finally, the therapeutic prospects of MAMPs in sepsis have been summarized.
Lack of seizure freedom before and during regular antiepileptic drug treatment increase the risk of probable SUDEP. Special attention should be given to patients with early convulsive epilepsy-onset, and the proper control of convulsive seizures is critical for the prevention of probable SUDEP.
Heat stress is one of the main factors that influence poultry production. Heat shock proteins (HSPs) are known to affect heat tolerance. The formation of HSPs is regulated by heat shock transcription factor 3 (HSF3) in chicken. A DNA pool was established for identifying single nucleotide polymorphisms (SNPs) of the chicken HSF3, and 13 SNPs were detected. The bioinformatic analysis showed that eight SNPs had the capacity to alter the transcription activity of HSF3. The dual luciferase report gene assay showed that there was a significant difference (P<0.01) in the Firefly luciferase/Renilla luciferase ratio (F/R) of C1703 A>G (S1) and C1388 A>G (S4) sites at the 5′-untranslated region (UTR) of chicken HSF3. The electrophoretic mobility shift assay showed that the S4 site was a transcription binding factor. The analysis of the association of the S1 and S4 sites with heat tolerance index revealed that the S4 site was significantly correlated with the CD 3+ T cell, corticosterone, and T3 levels in Lingshan Chickens and with the heterophil/lymphocyte value in White Recessive Rock. These results showed that the S4 site at the 5′UTR of chicken HSF3 might have an impact on heat tolerance in summer and could be used as a potential marker for the selection of chicken with heat tolerance in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.