In order to investigate the biologic processes underlying and resulting from the megakaryocytic hyperplasia that characterizes idiopathic myelofibrosis (IMF), peripheral blood CD34 ؉ cells isolated from patients with IMF, polycythemia vera (PV), and G-CSF-mobilized healthy volunteers were cultured in the presence of stem cell factor and thrombopoietin. IMF CD34 ؉ cells generated 24-fold greater numbers of megakaryocytes (MKs)
Early work on the hormonal basis of prostate cancer focused on the role of androgens, but more recently estrogens have been implicated as potential agents in the development and progression of prostate cancer. In this article, we review the epidemiological, laboratory and clinical evidence that estrogen may play a causative role in human prostate cancer, as well as rodent and grafted in vivo models. We then review recent literature highlighting potential mechanisms by which estrogen may contribute to prostate cancer, including estrogenic imprinting and epigenetic modifications, direct genotoxicity, hyperprolactinemia, inflammation and immunologic changes, and receptor-mediated actions. We discuss the work performed so far separating the actions of the different known estrogen receptors (ERs), ERα and ERβ, as well as G-protein-coupled receptor 30 and their specific roles in prostate disease. Finally, we predict that future work in this field will involve more investigations into epigenetic changes, experiments using new models of hormonal dysregulation in developing human prostate tissue, and continued delineation of the roles of the different ER subtypes, as well as their downstream signaling pathways that may serve as therapeutic targets.
Background: Previous work determined that early life exposure to low-dose Bisphenol A (BPA) increased rat prostate cancer risk with aging. Herein, we report on prostate-specific results from CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity), which aims to resolve uncertainties regarding BPA toxicity. Objectives: We sought to a ) reassess whether a range of BPA exposures drives prostate pathology and/or alters prostatic susceptibility to hormonal carcinogenesis, and b ) test whether chronic low-dose BPA targets prostate epithelial stem and progenitor cells. Methods: Sprague-Dawley rats were gavaged daily with vehicle, ethinyl estradiol (EE) or BPA/kg-BW during development or chronically, and prostate pathology was assessed at one year. One developmentally exposed cohort was given testosterone plus estradiol ( ) implants at day 90 to promote carcinogenesis with aging. Epithelial stem and progenitor cells were isolated by prostasphere (PS) culture from dorsolateral prostates (DLP) of rats continuously exposed for six months to BPA/kg-BW. Gene expression was analyzed by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR). Results: Exposure to BPA alone at any dose did not drive prostate pathology. However, rats treated with EE, 2.5, 250, or BPA/kg-BW plus showed greater severity of lateral prostate intraepithelial neoplasia (PIN), and DLP ductal adenocarcinoma multiplicity was markedly elevated in tumor-bearing rats exposed to -BW. DLP stem cells, assessed by PS number, doubled with chronic EE and exposures. PS size, reflecting progenitor cell proliferation, was greater at 25 and BPA doses, which also shifted lineage commitment toward basal progenitors while reducing luminal progenitor cells. Conclusions: Together, these results confirm and extend previous evidence using a rat model and human prostate epithelial cells that low-dose BPA augments prostate cancer susceptibility and alters adult prostate stem cell homeostasis. Therefore, we propose that BPA exposures may contribute to the increased carcinogenic risk in humans that occurs with aging. https://doi.org/10.1289/EHP3953
Background:Previous studies have uncovered heightened prostatic susceptibility to hormone-induced neoplasia from early-life exposure to low-dose bisphenol A (BPA). However, significant data gaps remain that are essential to address for biological relevance and necessary risk assessment.Objectives:A complete BPA dose–response analysis of prostate lesions across multiple prostatic lobes was conducted that included internal BPA dosimetry, progression to adenocarcinoma with aging and mechanistic connections to epigenetically reprogramed genes.Methods:Male neonatal Sprague-Dawley rats were briefly exposed to 0.1 to 5,000μg BPA/kg BW on postnatal days (PND) 1, 3, and 5. Individual prostate lobes plus periurethral prostatic ducts were evaluated at 7 mo or 1 y of age without or with adult testosterone plus estradiol (T+E) to promote carcinogenesis. DNA methylation of five genes was quantified by bisulfite genomic sequencing in d-200 dorsal prostates across BPA doses. Serum free-BPA and BPA-glucuronide were quantitated in sera of individual PND 3 pups collected 1 hr postexposure utilizing ultra-high-pressure tandem mass spectrometry (UHPLC-MS-MS).Results:The lowest BPA dose initiated maximal hormonal carcinogenesis in lateral prostates despite undetectable free BPA 1 hr postexposure. Further, prostatic intraepithelial neoplasia (PIN) progressed to carcinoma in rats given neonatal low-dose BPA with adult T+E but not in rats given adult T+E alone. The dorsal and ventral lobes and periurethral prostatic ducts exhibited a nonmonotonic dose response with peak PIN, proliferation and apoptotic values at 10–100μg/kg BW. This was paralleled by nonmonotonic and dose-specific DNA hypomethylation of genes that confer carcinogenic risk, with greatest hypomethylation at the lowest BPA doses.Conclusions:Developmental BPA exposures heighten prostate cancer susceptibility in a complex dose- and lobe-specific manner. Importantly, elevated carcinogenic risk is found at doses that yield undetectable serum free BPA. Dose-specific epigenetic modifications of selected genes provide a mechanistic framework that may connect early-life BPA to later-life predisposition to prostate carcinogenesis. https://doi.org/10.1289/EHP1050
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.