Generating long and coherent text is an important but challenging task, particularly for open-ended language generation tasks such as story generation. Despite the success in modeling intra-sentence coherence, existing generation models (e.g., BART) still struggle to maintain a coherent event sequence throughout the generated text. We conjecture that this is because of the difficulty for the decoder to capture the high-level semantics and discourse structures in the context beyond token-level co-occurrence. In this paper, we propose a long text generation model, which can represent the prefix sentences at sentence level and discourse level in the decoding process. To this end, we propose two pretraining objectives to learn the representations by predicting inter-sentence semantic similarity and distinguishing between normal and shuffled sentence orders. Extensive experiments show that our model can generate more coherent texts than state-of-the-art baselines.
Learning representation has been proven to be helpful in numerous machine learning tasks. The success of the majority of existing representation learning approaches often requires a large amount of consistent and noise-free labels. However, labels are not accessible in many real-world scenarios and they are usually annotated by the crowds. In practice, the crowdsourced labels are usually inconsistent among crowd workers given their diverse expertise and the number of crowdsourced labels is very limited. Thus, directly adopting crowdsourced labels for existing representation learning algorithms is inappropriate and suboptimal. In this paper, we investigate the above problem and propose a novel framework of Representation Learning with crowdsourced Labels, i.e., "RLL", which learns representation of data with crowdsourced labels by jointly and coherently solving the challenges introduced by limited and inconsistent labels. The proposed representation learning framework is evaluated in two real-world education applications. The experimental results demonstrate the benefits of our approach on learning representation from limited labeled data from the crowds, and show RLL is able to outperform state-of-the-art baselines. Moreover, detailed experiments are conducted on RLL to fully understand its key components and the corresponding performance.
Automatic short answer grading (ASAG), which autonomously score student answers according to reference answers, provides a costeffective and consistent approach to teaching professionals and can reduce their monotonous and tedious grading workloads. However, ASAG is a very challenging task due to two reasons: (1) student answers are made up of free text which requires a deep semantic understanding; and (2) the questions are usually open-ended and across many domains in K-12 scenarios. In this paper, we propose a generalized end-to-end ASAG learning framework which aims to (1) autonomously extract linguistic information from both student and reference answers; and (2) accurately model the semantic relations between free-text student and reference answers in open-ended domain. The proposed ASAG model is evaluated on a large real-world K-12 dataset and can outperform the state-of-the-art baselines in terms of various evaluation metrics.
Classroom activity detection (CAD) focuses on accurately classifying whether the teacher or student is speaking and recording both the length of individual utterances during a class. A CAD solution helps teachers get instant feedback on their pedagogical instructions. This greatly improves educators' teaching skills and hence leads to students' achievement. However, CAD is very challenging because (1) the CAD model needs to be generalized well enough for different teachers and students; (2) data from both vocal and language modalities has to be wisely fused so that they can be complementary; and (3) the solution shouldn't heavily rely on additional recording device. In this paper, we address the above challenges by using a novel attention based neural framework. Our framework not only extracts both speech and language information, but utilizes attention mechanism to capture long-term semantic dependence. Our framework is device-free and is able to take any classroom recording as input. The proposed CAD learning framework is evaluated in two real-world education applications. The experimental results demonstrate the benefits of our approach on learning attention based neural network from classroom data with different modalities, and show our approach is able to outperform state-of-the-art baselines in terms of various evaluation metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.