Time series land cover maps play a key role in monitoring the dynamic change of land use. To obtain classification maps with better spatial-temporal consistency and classification accuracy, this study used an algorithm that incorporated information from spatial and temporal neighboring observations in a hidden Markov model (HMM) to improve the time series land cover maps initially produced by a support vector machine (SVM). To investigate the effects of different initial distributions and transition probability matrices on the classification of the HMM, we designed different experimental schemes with different input elements to verify this algorithm with Landsat and HJ satellite images. In addition, we introduced spatial weights into the HMM to make effective use of spatial information. The experimental results showed that the HMM considered that spatial weights could eliminate the vast majority of illogical land cover transition that may occur in previous pixel-wise classification, and that this model had obvious advantages in spatial-temporal consistency and classification accuracy over some existing classification models.
Urbanization is changing the world’s surface pattern more and more drastically, which brings many social and ecological problems. Quantifying the changes in the landscape pattern and 3D structure of the city is important to understand these issues. This research study used Melbourne, a compact city, as a case study, and focused on landscape patterns and vertical urban volume (volume mean (VM), volume standard deviation (VSD)) and investigate the correlation between them from the scope of different scales and functions by Remote Sensing (RS) and Geographic Information System (GIS) techniques. We found: (1) From 2000 to 2012, the landscape pattern had a trend of decreasing fragmentation and increasing patch aggregation. The growth of VM and VSD was more severe than that of landscape metrics, and presented a “high–low” situation from the city center to the surroundings, maintaining the structure of “large east and small west”. (2) Landscape pattern was found closely associated with the urban volume. In the entire study area, landscape pattern patches with low fragmentation and high aggregation were directly proportional to VM with high value, which represented high urbanization, and patches with high connectivity and fragmentation had a positive relationship with high VSD, which represented strong spatial recognition. (3) The urban volumes of different urban functional areas were affected by different landscape patterns, and the analysis based on the local development situation can explain the internal mechanism of the interaction between the landscape pattern and the urban volume.
Time series land cover maps are important materials for the work related to land use and land cover change. Satellite remote sensing images prove advantageous in fast mapping with low cost. In most time series land cover products yielded by the satellite remote sensing images, a number of illogical transitions exist between different time phases. The time series land cover products cannot exactly reflect the real land cover types and land cover changes for each pixel. The accuracy evaluation based on the limited ground truth cannot well guide the users because the reliability of different pixels of the land cover products is unknown. A generic model for the reliability evaluation of time series land cover products should be developed based on a strong theoretical frame. In order to better guide the use of the land cover products, this paper proposed an approach to evaluate the reliability of time series land cover products by exploiting the joint probability of hidden Markov model (HMM), in which the classification performance and the spatio-temporal relationships were taken into account. We applied the proposed evaluation method on the time series land cover maps of Poyang Lake Eco-economic Region in China. The reliability of the land cover products was presented by the grading of the joint probability of HMM. The results effectively reflected the classification performance, the spatio-temporal relationships and even the quality of the data source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.