Dynamic load identification plays an important role in the field of fault diagnosis and structural modification design for aircraft. In conventional dynamic load identification approaches, accurate structural modeling is usually needed, which is difficult to obtain for highly nonlinear or unknown structures. In this paper, a one-dimensional convolution neural network with multiple modules is proposed for random dynamic load identification of aircraft. Firstly, the convolution module is designed for temporal feature extraction. Secondly, the extracted features are linearly weighted based on the contributions to the final output. The contributions are learned in a data driven manner via the designed attention module. Lastly, the dynamic load of a certain time stamp is predicted from the learned and weighted features. The proposed model is trained and tested using the real data from a GARTEUR aircraft model. Extensive experimental results with qualitative and quantitative evaluations have demonstrated the identification performance with satisfactory accuracy of the proposed approach under different strengths of load noises.
Due to its high mechanical penetration rate and lack of pollution of the environment, air reverse circulation drilling is considered to be a promising method for ice drilling. The air reverse circulation is caused by the combination of the ejector and the flushing nozzles in the drill bit. In this paper, CFD software was used to simulate the influence of the structure of the swirler on the effect of air reverse circulation in the swirling drill bit, and a testing stand was established for the testing of air reverse circulation. The results show that for drill bits without flushing nozzles, the smaller the helical angle is, the larger the entrainment ratio will be, meanwhile the smaller the area ratio is, the larger the entrainment ratio will be. In contrast, for drill bits designed with flushing nozzles, the larger the helical angle is, the larger the entrainment ratio will be, and the larger the area ratio is, the larger the entrainment ratio will be. In addition, the presence of the ice core sharply reduces the effect of air reverse circulation. When the ice core’s height exceeds that of the outlet of the swirler, the reverse circulation effect is slightly improved.
Ice core drilling with air reverse circulation is a promising technology that uses high-speed airflow to transport the ice core from the bottom of the hole along the central passage of the drill pipe to the surface. Understanding how the ice core moves through the pipe is crucial for this technology in order to calculate the pneumatic parameters. In this paper, experimental study and the CFD dynamic mesh technique are used to analyze the ice core transport process and flow field characteristics. In order to prove the correctness of the dynamic mesh technique, the simulation results were verified with the experimental results, and it was found that all the simulation data were in agreement with the experimental data trend, and the maximum error was less than 10%. According to the study, once the ice core’s velocity reaches its maximum throughout the transport process, it does not change. The ice core’s maximum velocity increases with the diameter ratio and decreases with the length-to-diameter ratio, while eccentricity has no impact on the maximum velocity. When the air velocity reaches 21 m/s, the diameter ratio for the ice core with a length-to-diameter ratio of 2 increases from 0.80 to 0.92, and the maximum velocity increases from 8.92 m/s to 17.45 m/s. Data fitting demonstrates that the equation Vmax=−1.04V0 + 1.04Va describes the relationship between the ice core’s maximum velocity, Vmax, and air velocity, Va. Finally, we obtain the ice core’s suspension velocity model using CFD simulation to calculate the suspension velocity, V0.
A reverse circulation Down-The-Hole (DTH) hammer drill bit in Casing-while-Drilling (CwD) processes is designed and applied to drilling under complicated formation. The drill bit is a special retractable drill bit with an exclusive reverse circulation gas channel. Using numerical simulations and experiments, the influence of the gas channel structure parameters of the drill bit, including the inner jet nozzles, flushing nozzles, suction channel, and other parameters, on its reverse circulation performance is analyzed, and the optimal gas channel structure parameters of the drill bit are determined to improve the reverse circulation effect. The results show that the flushing nozzles and inner jet nozzles have an important influence on entrainment performance. The entrainment rate η decreases as the flushing nozzle diameter increases and decreases as the inner jet nozzle diameter increases. An increase in the suction channel diameter can improve the reverse circulation effect of the drill bit. The spiral slot drill bit is more conducive to air being sucked into the central channel in the form of spiral flow, so it can improve the entrainment performance. The entrainment rate η can reach 23.4% with the optimum structured drill bit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.