Septins, a conserved family of cytoskeletal GTPbinding proteins, were presented in diverse eukaryotes. Here, a comprehensive phylogenetic and evolutionary analysis for septin proteins in metazoan was carried out. First, we demonstrated that all septin proteins in metazoan could be clustered into four subgroups, and the representative homologue of every subgroup was presented in the non-vertebrate chordate Ciona intestinalis, indicating that the emergence of the four septin subgroups should have occurred prior to divergence of vertebrates and invertebrates, and the expansion of the septin gene number in vertebrates was mainly by the duplication of pre-existing genes rather than by the appearance of new septin subgroup. Second, the direct orthologues of most human septins existed in zebrafish, which suggested that human septin gene repertoire was mainly formed by as far as before the split between fishes and land vertebrates. Third, we found that the evolutionary rate within septin family in mammalian lineage varies significantly, human SEPT1, SEPT 10, SEPT 12, and SEPT 14 displayed a relative elevated evolutionary rate compared with other septin members. Our data will provide new insights for the further function study of this protein family.
Oculopharyngodistal myopathy is a late-onset degenerative muscle disorder characterized by ptosis and weakness of the facial, pharyngeal, and distal limb muscles. A recent report suggested a non-coding trinucleotide repeat expansion in LRP12 to be associated with the disease. Here we report a genetic study in a Chinese cohort of 41 patients with the clinical diagnosis of oculopharyngodistal myopathy (21 cases from seven families and 20 sporadic cases). In a large family with 12 affected individuals, combined haplotype and linkage analysis revealed a maximum two-point logarithm of the odds (LOD) score of 3.3 in chromosomal region chr19p13.11-p13.2 and narrowed the candidate region to an interval of 4.5 Mb. Using a comprehensive strategy combining whole-exome sequencing, long-read sequencing, repeat-primed polymerase chain reaction and GC-rich polymerase chain reaction, we identified an abnormal CGG repeat expansion in the 5′ UTR of the GIPC1 gene that co-segregated with disease. Overall, the repeat expansion in GIPC1 was identified in 51.9% independent pedigrees (4/7 families and 10/20 sporadic cases), while the repeat expansion in LRP12 was only identified in one sporadic case (3.7%) in our cohort. The number of CGG repeats was <30 in controls but >60 in affected individuals. There was a slight correlation between repeat size and the age at onset. Both repeat expansion and retraction were observed during transmission but somatic instability was not evident. These results further support that non-coding CGG repeat expansion plays an essential role in the pathogenesis of oculopharyngodistal myopathy.
The accumulation of misfolded α-synuclein in dopamine (DA) neurons is believed to be of major importance in the pathogenesis of Parkinson's disease (PD). Animal models of PD, based on viral-vector-mediated over-expression of α-synuclein, have been developed and show evidence of dopaminergic toxicity, providing us a good tool to investigate potential therapies to interfere with α-synuclein-mediated pathology. An efficient disease-modifying therapeutic molecule should be able to interfere with the neurotoxicity of α-synuclein aggregation. Our study highlighted the ability of an autophagy enhancer, trehalose (at concentrations of 5 and 2% in drinking water), to protect against A53T α-synuclein-mediated DA degeneration in an adeno-associated virus serotype 1/2 (AAV1/2)-based rat model of PD. Behavioral tests and neurochemical analysis demonstrated a significant attenuation in α-synuclein-mediated deficits in motor asymmetry and DA neurodegeneration including impaired DA neuronal survival and DA turnover, as well as α-synuclein accumulation and aggregation in the nigrostriatal system by commencing 5 and 2% trehalose at the same time as delivery of AAV. Trehalose (0.5%) was ineffective on the above behavioral and neurochemical deficits. Further investigation showed that trehalose enhanced autophagy in the striatum by increasing formation of LC3-II. This study supports the concept of using trehalose as a novel therapeutic strategy that might prevent/reverse α-synuclein aggregation for the treatment of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.