STATEMENT OF PROBLEM Digital scans have increasingly become an alternative to conventional impressions. Although previous studies have analyzed the accuracy of the available intraoral scanners (IOSs), the effect of the light scanning conditions on the accuracy of those IOS systems remains unclear. PURPOSE The purpose of this in vitro study was to measure the impact of lighting conditions on the accuracy (trueness and precision) of different IOSs. MATERIAL AND METHODS A typodont was digitized by using an extraoral scanner (L2i; Imetric) to obtain a reference standard tessellation language (STL) file. Three IOSs were evaluated-iTero Element, CEREC Omnicam, and TRIOS 3-with 4 lighting conditions-chair light 10 000 lux, room light 1003 lux, natural light 500 lux, and no light 0 lux. Ten digital scans per group were recorded. The STL file was used as a reference to measure the discrepancy between the digitized typodont and digital scans by using the MeshLab software program. The Kruskal-Wallis, 1-way ANOVA, and pairwise comparison were used to analyze the data. RESULTS Significant differences for trueness and precision mean values were observed across different IOSs tested with the same lighting conditions and across different lighting conditions for a given IOS. In all groups, precision mean values were higher than their trueness values, indicating low relative precision. CONCLU-SIONS Ambient lighting conditions influenced the accuracy (trueness and precision) of the IOSs tested. The recommended lighting conditions depend on the IOS selected. For iTero Element, chair and room light conditions resulted in better accuracy mean values. For CEREC Omnicam, zero light resulted in better accuracy, and for TRIOS 3, room light resulted in better accuracy.
The present article describes a digital workflow for planning an esthetic treatment by using a facial and intraoral scanner, the dental and open-source software design of a facially generated diagnostic waxing, and additive manufactured (AM) clear silicone indices. A virtual design was created to fabricate a unique 3-piece AM index composed of flexible, clear silicone at the labial and lingual aspects and a rigid clear custom tray. The 3-piece AM clear indexes provided advantages compared with conventional procedures, including accurate reproduction of the digital diagnostic waxing, control of index thickness, various insertion paths of the silicone indices, flexibility of the indices, and online storage of the designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.