Aim: This work aims to explore the biological role of negative pressure wound therapy (NPWT) in the treatment of diabetic ulcer. Materials & methods: Full-thickness skin defects were created in diabetic (db/db) and non diabetic (db/m) mice to create wound models. The mice were received NPWT or rapamycin injection. Mouse macrophage cells (Raw264.7) were treated with lipopolysaccharide to induce inflammatory response, and then received negative pressure treatment. We observed the wound healing of mice and examined gene and protein expression and CD68+ macrophage levels. Results: NPWT notably enhanced the wound closure ratio, and inhibited the LC3-II/LC3-I ratio and Beclin-1 expression in diabetes mellitus (DM) mice. NPWT decreased CD68+ macrophage levels in wound tissues of DM mice. The influence conferred by NPWT was abolished by rapamycin treatment. Negative pressure repressed the LC3-II/LC3-I ratio and the expression of Beclin-1, TNF-α, IL-6 and IL-1β in the Raw264.7 cells. Conclusion: NPWT promotes wound healing by suppressing autophagy and macrophage inflammation in DM.
Ubiquitin-specific peptidase 25 (USP25) is a key deubiquitylase belonging to the USP superfamily that is primarily involved in inflammation and the immune response. Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine that is regarded as the master switch that initiates and maintains the type 2 immune response in allergic rhinitis (AR). However, the molecular mechanisms by which USP25 regulates TSLP signaling in the nasal epithelium in AR remain unclear. The present study assessed the protein expression levels of USP25 in the nasal epithelium of patients with AR. Moreover, USP25 knockout (KO) and wild-type (WT) mice were treated with ovalbumin (OVA) to establish a model of AR. The results of western blotting and immunohistochemistry in the present study demonstrated that the protein expression levels of USP25 were significantly decreased in the nasal mucosa of patients with AR and AR mice, whereas the protein expression levels of TSLP were significantly increased. Allergic inflammation was more severe in USP25 KO mice compared with WT mice exposed to OVA, as demonstrated by increased nose scratching and sneezing, increased eosinophil infiltration, goblet cell hyperplasia and enhanced T helper type 2 (Th2) cytokine production. The results of in vitro experiments demonstrated that silencing or overexpression of USP25 decreased or increased TNF receptor-associated factor 3 (TRAF3) protein expression levels, respectively, in human nasal epithelial cells, whereas TSLP protein expression levels were negatively associated with the expression of USP25 and TRAF3. In summary, USP25 downregulation enhanced TSLP signaling in the nasal mucosal epithelium via decreased TRAF3 expression, thereby exacerbating inflammation in AR. Therefore, USP25 may act as a novel therapeutic target in AR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.