Medical diagnostic imaging is essential for the differential diagnosis of cervical lymphadenopathy. Here we develop an ultrasound radiomics method for accurately differentiating cervical lymph node tuberculosis (LNTB), cervical lymphoma, reactive lymph node hyperplasia, and metastatic lymph nodes especially in the multi-operator, cross-machine, multicenter context. The inter-observer and intra-observer consistency of radiomics parameters from the region of interest were 0.8245 and 0.9228, respectively. The radiomics model showed good and repeatable diagnostic performance for multiple classification diagnosis of cervical lymphadenopathy, especially in LNTB (area under the curve, AUC: 0.673, 0.662, and 0.626) and cervical lymphoma (AUC: 0.623, 0.644, and 0.602) in the whole set, training set, and test set, respectively. However, the diagnostic performance of lymphadenopathy among skilled radiologists was varied (Kappa coefficient: 0.108, *p < 0.001). The diagnostic performance of radiomics is comparable and more reproducible compared with those of skilled radiologists. Our study offers a more comprehensive method for differentiating LNTB, cervical lymphoma, reactive lymph node hyperplasia, and metastatic LN.
Non-alcoholic fatty liver disease (NAFLD) affects obesity-associated metabolic syndrome, which exhibits hepatic steatosis, insulin insensitivity and glucose intolerance. Emerging evidence suggests that microRNAs (miRNAs) are essential for the metabolic homeostasis of liver tissues. Many hepatic miRNAs located in the miR-379/miR-544 cluster were significantly increased in leptin-receptor-deficient type 2 mice (db/db), a mouse model of diabetes. However, the function of the miR-379/miR-544 cluster in the process of hepatic steatosis remains unclear. Here, we report that the novel function of miR-379/miR-544 cluster in regulating obesity-mediated metabolic dysfunction. Genetical mutation of miR-379/miR-544 cluster in mice displayed resistance to high-fat diet (HFD)-induced obesity with moderate hepatic steatosis and hypertriglyceridemia. In vitro studies revealed that silencing of miR-379 in human hepatocellular carcinoma (HepG2) cells ameliorated palmitic acid-induced elevation of cellular triglycerides, and overexpression of miR-379 had the opposite effect. Moreover, Igf1r (Insulin-like growth factor 1 receptor) and Dlk1 (Delta-like homolog 1) were directly targeted by miR-379 and miR-329, respectively, and elevated in the livers of the miR-379/miR-544 cluster knockout mice fed on HFD. Further transcriptome analyses revealed that the hepatic gene expressions are dysregulated in miR-379/miR-544 knockout mice fed with HFD. Collectively, our findings identify the miR-379/miR-544 cluster as integral components of a regulatory circuit that functions under conditions of metabolic stress to control hepatic steatosis. Thus, this miRNA cluster provides potential targets for pharmacologic intervention in obesity and NAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.