We present a proof procedure for univariate real polynomial problems in Isabelle/HOL. The core mathematics of our procedure is based on univariate cylindrical algebraic decomposition. We follow the approach of untrusted certificates, separating solving from verifying: efficient external tools perform expensive real algebraic computations, producing evidence that is formally checked within Isabelle's logic. This allows us to exploit highly-tuned computer algebra systems like Mathematica to guide our procedure without impacting the correctness of its results. We present experiments demonstrating the efficacy of this approach, in many cases yielding orders of magnitude improvements over previous methods.
In complex analysis, the winding number measures the number of times a path (counter-clockwise) winds around a point, while the Cauchy index can approximate how the path winds. We formalise this approximation in the Isabelle theorem prover, and provide a tactic to evaluate winding numbers through Cauchy indices. By further combining this approximation with the argument principle, we are able to make use of remainder sequences to effectively count the number of complex roots of a polynomial within some domains, such as a rectangular box and a half-plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.