The decreasing supply of soils with geotechnical parameters suitable for pavement designs is a visible problem in our environment. In order to establish more efficient designs and adequate construction criteria, it is essential to understand the performance of materials. This is a study of the permanent deformation (PD) of soil used in pavement layers, obtaining prediction models through the technique of artificial neural networks, in addition to the design of pavement structures using mechanistic-empirical and empirical methods. The multistage repeated load triaxial (RLT) test, as well as numerical analyses of stresses and displacements using the CAP3D program, was used. The results showed that both the test procedure and the prediction models performed satisfactorily in obtaining PD behavior. Moreover, designs using the methods adopted resulted in distinct structures, that is, thickness different from the granular pavement layers. It was concluded that the model and test procedure exhibit significant potential for characterizing and modeling the PD of granular materials.
RESUMO Para estabelecer projetos mais eficientes e critérios construtivos adequados na área de pavimentação é indispensável o entendimento do desempenho dos materiais com relação aos métodos de dimensionamentos mecanístico-empírico. Este trabalho analisa as propriedades de Deformação Permanente (DP) e Módulo de Resiliência (MR) de solos utilizados em camadas de pavimentos para análises de diferentes tipos de dimensionamento, mecanístico-empírico e empírico de rodovias brasileiras. O método de ensaio para obtenção da DP foi o triaxial de carga repetidas de múltiplo estágios (RLT), com aplicação de 10.000 ciclos por estágio, e o dimensionamento mecanístico-empírico realizado pelo método MeDiNa, recém divulgado no Brasil, e pelo programa CAP 3D-D, que realiza análises numéricas de tensões e deslocamentos dos pavimentos propostos. Utilizou-se a técnica de Redes Neurais Artificiais (RNA) para o desenvolvimento dos modelos de previsão de DP. Os resultados mostraram que tanto o método de ensaio, quanto as equações de predição tiveram desempenho satisfatório na obtenção do comportamento da DP. Já os dimensionamentos realizados através dos métodos utilizados resultaram em estruturas distintas. Conclui-se que o modelo e a técnica de obtenção utilizada, bem como a metodologia de ensaio possuem grande potencial para caracterizar e modelar a DP de materiais granulares e que o Brasil deve investir cada vez mais no uso de métodos mecanístico-empírico para análise de pavimentos.
Modo de acesso: World Wide Web Inclui bibliografia 1. Engenharia 2. Educação.I. Título CDD-620 O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos seus respectivos autores.
The decreasing supply of soils with geotechnical parameters suitable for pavement designs is a problem. To establish more efficient designs and adequate construction criteria, it is essential to understand the performance of materials. In this work, the permanent deformation (PD) of soils used in pavement layers was studied using prediction models of PD and modulus of resilience in addition to the design of pavement structures using mechanistic–empirical and empirical methods. The multistage repeated load triaxial test was used along with numerical analyses of stresses and displacements using the CAP3D program. The results showed that both the test procedure and the prediction models satisfactorily obtained the PD behaviour. Moreover, designs using the methods adopted resulted in distinct structures (i.e. different thicknesses of granular pavement layers). From the results of this study, it was concluded that both the model and the test procedure show significant potential for characterising and modelling the PD of granular materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.