The rich photophysical properties of luminescent inorganic and organometallic transition metal complexes, such as their intense, long-lived, and environment-sensitive emission, render them excellent candidates for biological and cellular studies. In this Perspective, we review examples of biological probes derived from luminescent transition metal complexes with a d(6), d(8), or d(10) metal center. The design of luminescent covalent labels and noncovalent probes for protein molecules is discussed. Additionally, the recent applications of these complexes as cellular probes and bioimaging reagents are described. Emphasis is put on the structural features, photophysical behavior, biomolecular interactions, cellular uptake, and intracellular localization properties of luminescent transition metal complexes.
A series of luminescent cyclometalated iridium(III) polypyridine complexes containing a di-2-picolylamine (DPA) moiety [Ir(N^C)(2)(phen-DPA)](PF(6)) (phen-DPA = 5-(di-2-picolylamino)-1,10-phenanthroline) (HN^C = 2-phenylpyridine, Hppy (1a), 2-(4-methylphenyl)pyridine, Hmppy (2a), 2-phenylquinoline, Hpq (3a), 4-(2-pyridyl)benzaldehyde, Hpba (4a)) and their DPA-free counterparts [Ir(N^C)(2)(phen-DMA)](PF(6)) (phen-DMA = 5-(dimethylamino)-1,10-phenanthroline) (HN^C = Hppy (1b), Hmppy (2b), Hpq (3b), Hpba (4b)) have been synthesized and characterized, and their photophysical and electrochemical properties investigated. Photoexcitation of the complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence. The emission of the complexes has been assigned to a triplet metal-to-ligand charge-transfer ((3)MLCT) (dπ(Ir) → π*(N^N)) or triplet intraligand ((3)IL) (π → π*) (N^C) excited state and with substantial mixing of triplet amine-to-ligand charge-transfer ((3)NLCT) (n → π*) (N^N) character, depending on the identity of the cyclometalating and diimine ligands. Electrochemical measurements revealed an irreversible amine oxidation wave at ca. +1.1 to +1.2 V vs saturated calomel electrode, a quasi-reversible iridium(IV/III) couple at ca. +1.2 to +1.6 V, and a reversible diimine reduction couple at ca. -1.4 to -1.5 V. The cation-binding properties of these complexes have been studied by emission spectroscopy. Upon binding of zinc ion, the iridium(III) DPA complexes displayed 1.2- to 5.4-fold emission enhancement, and the K(d) values determined were on the order of 10(-5) M. Job's plot analysis confirmed that the binding stoichiometry was 1:1. Additionally, selectivity studies showed that the iridium(III) DPA complexes were more sensitive toward zinc ion among various transition metal ions examined. Furthermore, the cytotoxicity of these complexes toward human cervix epithelioid carcinoma cells have been studied by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide assay and their cellular-uptake properties by inductively coupled plasma mass spectrometry and laser-scanning confocal microscopy.
We report here the synthesis, characterization and photophysical properties of two novel phosphorescent cyclometalated iridium(III) polypyridine D-fructose complexes and their fructose-free counterparts. The cellular uptake of the complexes and their cytotoxicity have also been examined.
We present a new class of phosphorescent cyclometalated iridium(III) bipyridyl-phenylenediamine complexes [Ir(N^C)2 (bpy-DA)](PF6 ) (bpy-DA=4-(N-(2-amino-5-methoxyphenyl)aminomethyl)-4'-methyl-2,2'-bipyridine; HN^C=2-(2,4-difluorophenyl)pyridine (Hdfppy) (1 a), 2-phenylpyridine (Hppy) (2 a), 2-phenylquinoline (Hpq) (3 a), 2-phenylcinchoninic acid methyl ester (Hpqe) (4 a)) and their triazole counterparts [Ir(N^C)2 (bpy-T)](PF6 ) (bpy-T=4-((6-methoxybenzotriazol-1-yl)methyl)-4'-methyl-2,2'-bipyridine; HN^C=Hdfppy (1 b), Hppy (2 b), Hpq (3 b), Hpqe (4 b)). Upon photoexcitation, the diamine complexes exhibited fairly weak green to red phosphorescence under ambient conditions whereas the triazole derivatives emitted strongly. The photophysical properties of complexes 2 a and 2 b have been studied in more detail. Upon protonation, the diamine complex 2 a displayed increased emission intensity, but the emission properties of its triazole counterpart complex 2 b were independent on the pH value of the solution. Also, complex 2 a was found to be readily converted into complex 2 b upon reaction with NO under aerated conditions, resulting in substantial emission enhancement of the solution. The reaction was highly specific toward NO over other reactive oxygen and nitrogen species (RONS) as revealed by spectroscopic analyses. The lipophilicity and cellular uptake efficiency of the diamine complexes have been examined and correlated to their molecular structures. Also, cell-based assays showed that these complexes were noncytotoxic toward human cervix epithelioid carcinoma (HeLa) cells (at 10 μM, 4 h, percentage survival ≈80-95%). Additionally, the diamine complexes have been used to visualize intracellular NO generated both exogenously in HeLa cells and endogenously in RAW 264.7 murine macrophages by laser-scanning confocal microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.