Bmi1 gene overexpression is found in various human tumors and has been shown as a potential target for gene treatment. However, siRNA-based treatments targeting Bmi1 gene have been restricted to limited delivery, low bioavailability and hence relatively reduced efficacy. To overcome these barriers, we developed a folate receptor targeted co-delivery system folate-doxorubicin/Bmi1 siRNA liposome (FA-DOX/siRNA-L). The FA-DOX/siRNA-L was prepared through electrostatic interaction between folate doxorubicin liposome (FA-DOX-L) and Bmi1 siRNA. In vitro and in vivo studies showed that FA-DOX/siRNA-L inhibited tumor growth by combinatory role of Bmi1 siRNA and doxorubicin (DOX). Co-delivery of Bmi1 siRNA and DOX by FA-DOX/siRNA-L showed significantly higher efficacy than sole delivery of either DOX or Bmi1 siRNA. Real-time PCR and western blot analysis showed that FA-DOX/siRNA-L silenced the expression of Bmi1 gene. In addition, higher accumulation of the siRNA and DOX in tumor cells indicated that folate ligand displayed tumor targeting effect. These results suggest that Bmi1 is an effective therapeutic target for siRNA based cancer treatment that can be further improved by co-delivery of DOX through targeted liposomes.
The antitumor efficacy of ursolic acid (UA) was limited by poor hydrophilicity and low bioavailability. To overcome this issue, UA was encapsulated in liposomes modified with folate conjugates for better solubility and bioavailability. This novel agent was prepared by a thin-film dispersion method and characterized by mean diameter, zeta potential, and entrapment efficiency (160.1 nm, -21.2 mV, and 88.9%, respectively). In vitro, cellular uptake efficiency, cytotoxicity, apoptosis, and cell cycle analyses were performed to show that folate-receptor (FR) positive cells endocytose more FR-targeted liposome (FTL-UA) than nontargeted PEGylated liposome (PL-UA) and that FTL-UA induced more cytotoxicity and higher apoptosis than PL-UA. Pharmacokinetic assessments showed advantages of systemic bioavailability of FTL-UA (AUC = 218.32 mg/L·h, t1/2 = 7.61 h) over free UA (AUC = 36.88 mg/L·h, t1/2 = 0.78 h). In vivo, FTL-UA showed significantly higher human epidermoid carcinoma (KB) inhibition in Balb/c nu/nu mice compared to PL-UA or free UA. The results indicate the great potential of FTL-UA against KB tumor.
Purpose
Imatinib inhibits platelet-derived growth factor receptor (PDGFR), and evidence shows that PDGFR participates in the development and progression of cervical cancer. Although imatinib has exhibited preclinical activity against cervical cancer, only minimal clinical therapeutic efficacy was observed. This poor therapeutic efficacy may be due to insufficient drug delivery to the tumor cells and plasma protein binding. Therefore, the purpose of this study was to explore a novel folate receptor (FR)-targeted delivery system via imatinib-loaded liposomes to enhance drug delivery to tumor cells and to reduce plasma protein binding.
Methods
Imatinib was remote-loaded into FR-targeted liposomes which were prepared by thin film hydration followed by polycarbonate membrane extrusion. Encapsulation efficiency, mean size diameter, and drug retention were characterized and cellular uptake, cell cytotoxicity, and cell apoptosis on cervical cancer HeLa cells were evaluated. Comparative pharmacokinetic studies were also carried out with FR-targeted imatinib liposomes, simple imatinib liposomes, and free imatinib.
Results
High encapsulation efficiency (>90%), appropriate mean particle size (143.5 nm), and zeta potential (−15.97 mV) were obtained for FR-targeted imatinib liposomes. The drug release profile showed minimal imatinib leakage (<5%) in phosphate-buffered saline (PBS) at pH =7.4 within 72 hours of incubation, while more leakage (>25%) was observed in PBS at pH =5.5. This indicates that these liposomes possess a certain degree of pH sensitivity. Cytotoxicity assays demonstrated that the FR-targeted imatinib liposomes promoted a six-fold IC
50
reduction on the non-targeted imatinib liposomes from 910 to 150 μM. In addition, FR-targeted imatinib liposomes enhanced HeLa cell apoptosis in vitro compared to the non-targeted imatinib liposomes. Pharmacokinetic parameters indicated that both targeted and non-targeted liposomes exhibited long circulation properties in Kunming mice.
Conclusion
These findings indicate that the nano-sized FR-targeted PDGFR antagonist imatinib liposomes may constitute a promising strategy in cervical cancer therapy through the combination of active targeting and molecular targeting.
CdTe@SiO2–NH–CO–PEG−folate nanoparticles were successfully prepared and demonstrated tumor cell specific targeting through folate receptors via folate mediated endocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.